PRELIMINARY HYDROLOGY AND HYDRAULIC REPORT

COUNTY OF SAN DIEGO TRACT #5479 AT BUENA VISTA DR, VISTA CA APN 169-200-20

Prepared for:

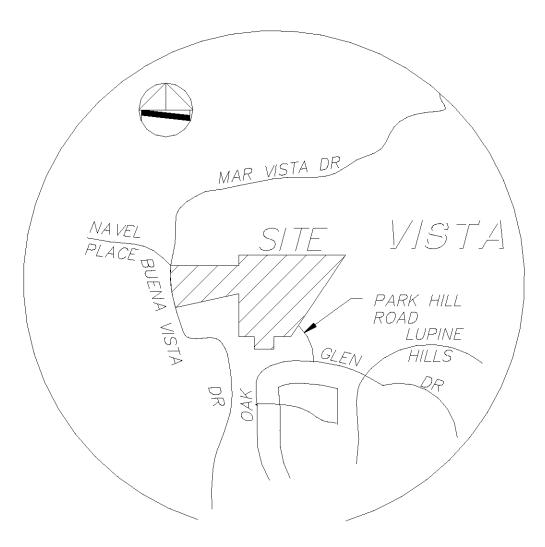
Pacifica Real Estate Services Inc.
PAS Investors LP
5505 Cancha de Golf
Rancho Santa Fe, CA 92091

Prepared by:

bha, Inc.

land planning, civil engineering, surveying 5115 Avenida Encinas, Suite L Carlsbad, CA 92008-4387 (760) 931-8700

> March 27, 2013 Revised September 11, 2013


> > W.O. 943-1049-400

SDC PDS RCVD 09-12-13 TM5479RPL5

TABLE OF CONTENTS

I.	Discussion:	Vicinity Map.3Purpose and Scope.4Project Description.4Study Method.4Conclusions.6Declaration of Responsible Charge.7
II.	Exhibits:	Existing & Proposed Hydrology Maps Fold Out
III.	Calculations:	A. Existing 100-Year Hydrology 9
		B. Proposed Undetained 100-Year Hydrology 19
		C. Proposed Detained 100-Year Hydrology 42
		D. Detention Calculations
IV	References	81

I. DISCUSSION

VICINITY MAP

PURPOSE AND SCOPE:

The purpose of this report is to publish the results of hydrology and hydraulic computer analysis for the proposed development of Tract #5479 in the County of San Diego. The scope of this study is to analyze the results of existing and developed condition hydrology calculations and provide recommendations as to the design and size of various hydraulic systems considered as mitigation of any potential adverse effects of the proposed project. Proposed storm water drainage facilities include runoff interception ditches, curb inlets, catch basins, and bioretention basins. Information contained in this report will be referred to for the purpose of sizing treatment facilities as proposed in the associated Storm Water Management Plan (SWMP) for this site.

PROJECT DESCRIPTION:

The project site is a 25.8- acre vacant lot (A. P. N 169-200-20) located on the east side of Buena Vista Drive and South of Mar Vista Drive in an unincorporated area of San Diego County that is bounded on all sides by the City of Vista. The project site is currently undeveloped, occupies south-facing and west-facing slopes of two natural drainage basins that split the property. On-site topography includes steep slopes to the south and the west with intermittent rock outcroppings, and elevations ranging from approximately 363 feet above mean sea level on the northern boundary at the northwest corner of the site, to approximately 509 feet above mean sea level on the northern boundary towards the northeast corner of the site. The project is located in the Los Monos Hydrologic Subarea (904.31), part of the Carlsbad Hydrologic Unit (904.00). The site soil quality is predominately Type-D, with small regions of Type-B and C soil. For this report, only Type-D soil will be considered. No contaminated or hazardous soil was located within the project area, and no evidence of scouring or excessive erosion resulting from concentrated runoff was in evidence at the site.

The proposed site is a 25.8-acre residential subdivision with 19 single family units with a minimum lot size of 0.5 acre, and a private road. The proposed drainage mimics the existing drainage pattern with regard to area and discharge points. The site will be approximately 14.7% impervious surface post-development. All site drainage will be routed 1 of 2 bioretention basins, sized for treatment and hydromodification per the County of San Diego SUSMP, see the SWMP report for this project. The basins serve to treat and discharge storm water runoff at or below pre-development flowrates, preventing any adverse affects downstream caused by the proposed development.

STUDY METHOD:

The method of analysis was based on the Rational Method according to the San Diego County Hydrology Manual. The Hydrology and Hydraulic Analysis were done on Hydro Soft by Advanced Engineering Software 2007.

Drainage basin areas were determined from the topography and proposed grades shown on the

4

Tentative Map for this site and County of San Diego 200-Scale Topography Maps.

Included in the watershed area for this project is the runoff generated by the Gamboni Ranch subdivision, located to the southeast of the project site but ultimately sharing the same discharge point as this proposed development. The Hydrology Report for Gamboni Ranch was also performed by BHA, Inc., the results of which are referenced at its two recorded discharge locations and included in this report's Rational Method Calculations. Applicable pages of the Gamboni Ranch Hydrology Report have been included in the Calculations, section F of this report.

The Rational Method provided the following variable coefficients:

The soil conditions used in this study are consistent with Type-D soil qualities. Composite C-values were determined for drainage areas containing both pervious and impervious surfaces, see Table 1.0 below:

Table 1.0:

Table 1.0:							
,		Composite C-val	ue Calo	culations			
Up Node	Dwn Node	Total Acreage	C1	A1 (acres)	C2	A2 (acres)	Ccomp
Existing Hy	drology-	ar-	40 40		100	or:	
12	11	3.95	0.35	3.25	0.87	0.70	0.44
11	10	25.98	0.35	24.16	0.87	1.82	0.39
Proposed H	lydrology-						
107	106	0.47	0.35	0.37	0.87	0.1	0.46
106	105	3.18	0.35	1.46	0.87	1.72	0.63
122	121	0.083	0.35	0.046	0.87	0.037	0.58
121	120	0.85	0.35	0.58	0.87	0.27	0.51
132	131	0.47	0.35	0.37	0.87	0.10	0.46
131	130	2.37	0.35	1.98	0.87	0.39	0.44
130	102	0.98	0.35	0.88	0.87	0.10	0.40
151	150	3.95	0.35	3.25	0.87	0.70	0.44
150	101	17.75	0.35	15.93	0.87	1.82	0.40
256	255	3.47	0.35	2.49	0.87	0.98	0.50
257	256	1.10	0.35	0.94	0.87	0.16	0.43

Note: C-values taken from Table 3-1 of San Diego County Hydrology Manual, consistent with on-site existing soil types from the USDA Web Soil Survey. See Appendix.

Rainfall Intensity = $I = 7.44x(P6)x(Tc)^- - 0.645$

P6 for 100 year storm = 3.2"

P24 for 100 Year Storm = 5.5"

Table 1.1 below summarizes the Results of the Rational Method Analysis:

Table 1.1:

100 Year Storm Frequency, Summary of Hydrology Analysis Results							
Basin		Existing	Proposed Undetained	Proposed Detained			
	Q (cfs)	41.58	36.91	31.41			
1	T (min)	19.59	19.97	19.97			
	Acres	30.0	30.3	30.3			
	Q (cfs)	57.75	60.96	56.99			
2	T (min)	25.35	24.20	24.23			
	Acres	52.2	51.8	51.8			

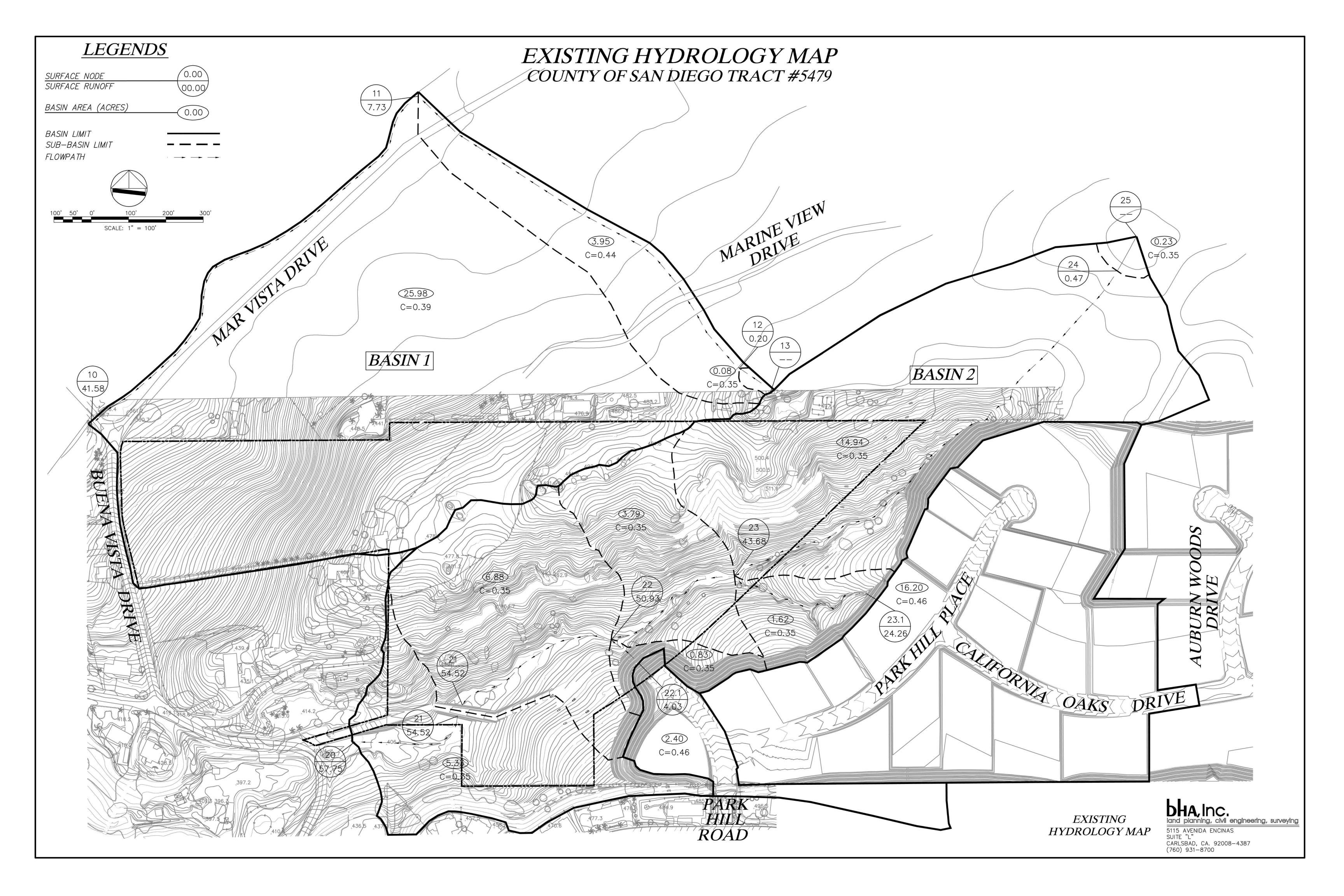
The areas of Basin 1 and 2 differ by 0.3 acres from the existing to the proposed conditions. The site was graded to match the existing basin boundaries to the maximum extent practicable. However, with the lot sizes being 0.5 acres minimum, it was unfeasible to split the drainage from one single lot into 2 different watershed basins to make up the remaining acreage. Both this Hydrology Report and the SWMP Report for this project reflect these drainage basin limits.

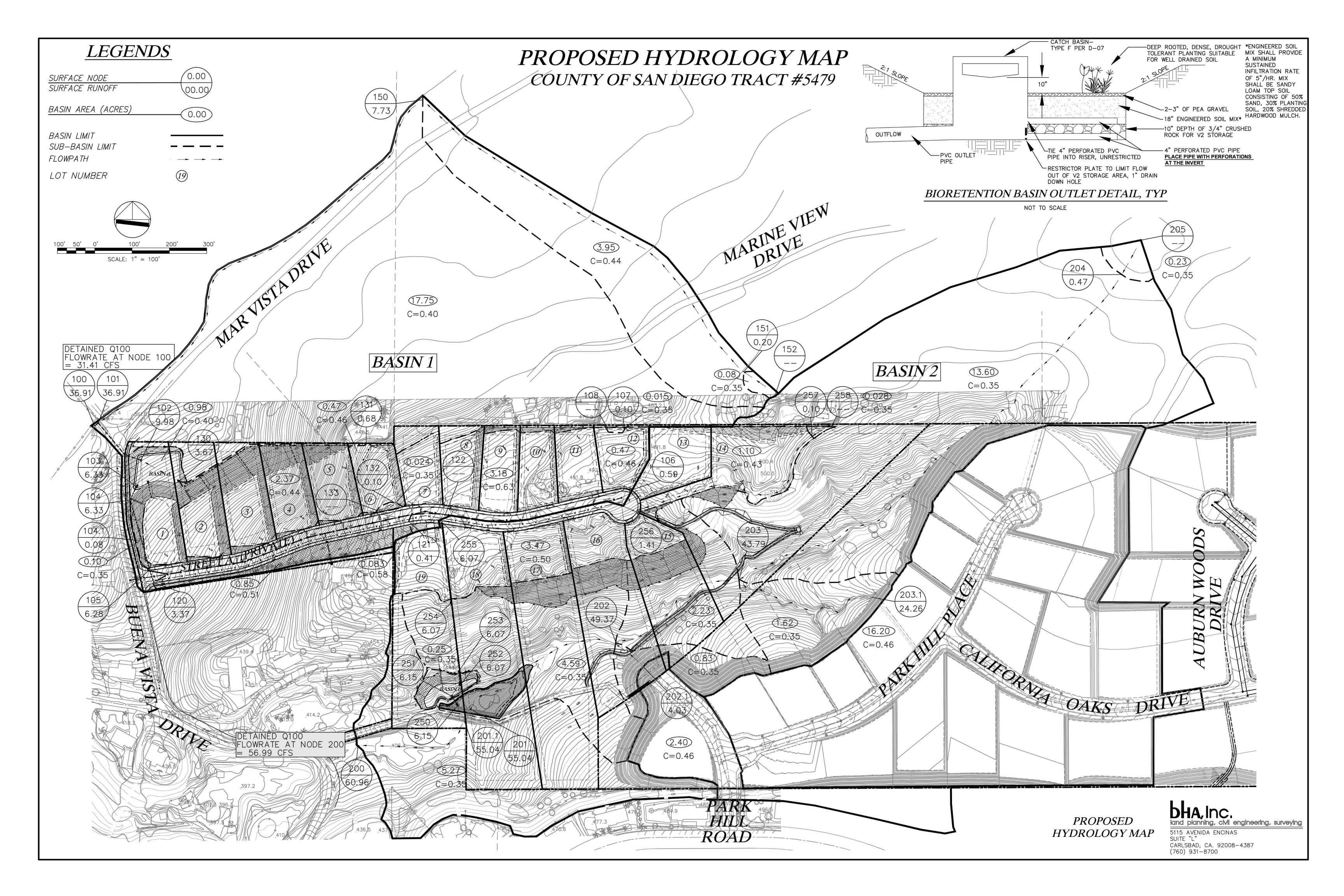
CONCLUSION:

The proposed storm drain system for this project adequately treats, mitigates, and conveys storm water runoff per the San Diego County HMP. The outlet flow from the proposed bioretention basins will achieve the required detention values, and discharge the 100-year storm at or below historical values. Sediment will be reduced upon site development.

DECLARATION OF RESPONSIBLE CHARGE

I hereby declare that I am the Engineer of Work for this project, that I have exercised responsible charge over the design of the project as defined in section 6703 of the business and professions code, and that the design is consistent with current standards.


I understand that the check of project drawings and specifications by the County of San Diego is confined to a review only and does not relieve me, as Engineer of Work, of my responsibilities for project design.


Ron Holloway R.C.E. 29271

Date

II. **EXHIBITS**

EXISTING & PROPOSED HYDROLOGY MAPS

CALCULATIONS III.

EXISTING 100-YEAR HYDROLOGY A.

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL

(c) Copyright 1982-2012 Advanced Engineering Software (aes) Ver. 19.0 Release Date: 06/01/2012 License ID 1459

Analysis prepared by:

BHA Inc 5115 Avenida Encinas, Suite L Carlsbad CA 92008

* Existing Condition Hydrology Analysis * 100 Year Storm Frequency **************** FILE NAME: 1049E100.DAT TIME/DATE OF STUDY: 12:45 01/15/2013 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* ******************* 12.00 IS CODE = 21 FLOW PROCESS FROM NODE 13.00 TO NODE ______ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS< ______ *USER SPECIFIED(SUBAREA):

bha, Inc.

```
USER-SPECIFIED RUNOFF COEFFICIENT = .3500
 S.C.S. CURVE NUMBER (AMC II) = 0
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 517.20
 DOWNSTREAM ELEVATION (FEET) = 502.00
 ELEVATION DIFFERENCE (FEET) = 15.20
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 6.267
 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN TO CALCULATION!
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.288
 SUBAREA RUNOFF(CFS) = 0.20
 TOTAL AREA(ACRES) =
                    0.08 TOTAL RUNOFF(CFS) = 0.20
******************
 FLOW PROCESS FROM NODE 12.00 TO NODE 11.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 502.00 DOWNSTREAM(FEET) =
 CHANNEL LENGTH THRU SUBAREA (FEET) = 1249.00 CHANNEL SLOPE = 0.1017
 CHANNEL BASE (FEET) = 10.00 "Z" FACTOR = 10.000
 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 1.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.377
 *USER SPECIFIED (SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .4400
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.14
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 2.76
 AVERAGE FLOW DEPTH(FEET) = 0.13 TRAVEL TIME(MIN.) = 7.55
 Tc(MIN.) = 13.82
 SUBAREA AREA(ACRES) = 3.95 SUBAREA RUNOFF(CFS) = 7.61
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.438
 TOTAL AREA(ACRES) = 4.0
                               PEAK FLOW RATE (CFS) = 7.73
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.19 FLOW VELOCITY(FEET/SEC.) = 3.50
                                       11.00 =
 LONGEST FLOWPATH FROM NODE 13.00 TO NODE
                                                1349.00 FEET.
*******************
 FLOW PROCESS FROM NODE 11.00 TO NODE
                                    10.00 \text{ IS CODE} = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 375.00 DOWNSTREAM(FEET) =
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1298.00 CHANNEL SLOPE = 0.0133
 CHANNEL BASE (FEET) = 2.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 2.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.494
 *USER SPECIFIED (SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .3900
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 25.64
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.75
```

```
AVERAGE FLOW DEPTH(FEET) = 1.42 TRAVEL TIME(MIN.) = 5.77
 Tc(MIN.) = 19.59
 SUBAREA AREA(ACRES) = 25.98 SUBAREA RUNOFF(CFS) = 35.41
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.396
 TOTAL AREA(ACRES) =
                  30.0
                               PEAK FLOW RATE (CFS) = 41.58
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.77 FLOW VELOCITY(FEET/SEC.) = 4.25
 LONGEST FLOWPATH FROM NODE 13.00 TO NODE 10.00 = 2647.00 FEET.
******************
 FLOW PROCESS FROM NODE
                     25.00 TO NODE
                                   24.00 \text{ IS CODE} = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
______
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .3500
 S.C.S. CURVE NUMBER (AMC II) = 0
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 526.50
 DOWNSTREAM ELEVATION (FEET) = 523.00
 ELEVATION DIFFERENCE(FEET) = 3.50
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.892
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.816
 SUBAREA RUNOFF(CFS) = 0.47
 TOTAL AREA(ACRES) = 0.23 TOTAL RUNOFF(CFS) = 0.47
********************
 FLOW PROCESS FROM NODE 24.00 TO NODE 23.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 523.00 DOWNSTREAM(FEET) = 430.90
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1356.00 CHANNEL SLOPE = 0.0679
 CHANNEL BASE (FEET) = 10.00 "Z" FACTOR = 5.000
 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 5.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.173
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .3500
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 11.66
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.78
 AVERAGE FLOW DEPTH(FEET) = 0.27 TRAVEL TIME(MIN.) = 5.99
 Tc(MIN.) = 14.88
 SUBAREA AREA(ACRES) = 14.94
                            SUBAREA RUNOFF (CFS) = 21.82
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.350
 TOTAL AREA(ACRES) = 15.2 PEAK FLOW RATE(CFS) = 22.16
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.39 FLOW VELOCITY(FEET/SEC.) = 4.70
 LONGEST FLOWPATH FROM NODE 25.00 TO NODE 23.00 = 1456.00 FEET.
********************
```

```
FLOW PROCESS FROM NODE 24.00 TO NODE 23.00 IS CODE = 1
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 14.88
 RAINFALL INTENSITY (INCH/HR) = 4.17
 TOTAL STREAM AREA(ACRES) = 15.17
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
*****************
 FLOW PROCESS FROM NODE 23.20 TO NODE 23.10 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .3500
 S.C.S. CURVE NUMBER (AMC II) = 0
 INITIAL SUBAREA FLOW-LENGTH (FEET) =
 UPSTREAM ELEVATION(FEET) = 455.10
 DOWNSTREAM ELEVATION(FEET) = 455.00
ELEVATION DIFFERENCE(FEET) = 0.10
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 0.063
 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN TO CALCULATION!
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 8.431
 NOTE: RAINFALL INTENSITY IS BASED ON To = 5-MINUTE.
 SUBAREA RUNOFF(CFS) = 0.30
 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) =
                                           0.30
************************
 FLOW PROCESS FROM NODE 23.20 TO NODE 23.10 IS CODE = 7
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<
______
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 18.12 RAIN INTENSITY(INCH/HOUR) = 3.67
 TOTAL AREA(ACRES) = 16.20 TOTAL RUNOFF(CFS) =
******************
 FLOW PROCESS FROM NODE 23.10 TO NODE 23.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <
______
 ELEVATION DATA: UPSTREAM(FEET) = 455.00 DOWNSTREAM(FEET) = 430.90
 CHANNEL LENGTH THRU SUBAREA(FEET) = 400.00 CHANNEL SLOPE = 0.0603
 CHANNEL BASE(FEET) = 10.00 "Z" FACTOR = 5.000
 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 2.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.501
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .3500
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 25.25
```

```
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 4.71
 AVERAGE FLOW DEPTH(FEET) = 0.44 TRAVEL TIME(MIN.) = 1.42
 Tc(MIN.) = 19.54
 SUBAREA AREA(ACRES) = 1.62 SUBAREA RUNOFF(CFS) = 1.98
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.402
                           PEAK FLOW RATE (CFS) = 25.10
 TOTAL AREA(ACRES) = 17.8
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.44 FLOW VELOCITY(FEET/SEC.) = 4.70
 LONGEST FLOWPATH FROM NODE 23.20 TO NODE 23.00 = 400.01 FEET.
FLOW PROCESS FROM NODE 23.10 TO NODE 23.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION (MIN.) = 19.54
 RAINFALL INTENSITY(INCH/HR) = 3.50
 TOTAL STREAM AREA(ACRES) = 17.82
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 25.10
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR)
                                     AREA
                                     (ACRE)
          22.16 14.88 4.173
25.10 19.54 3.501
    1
                                      15.17
    2
                                       17.82
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC INTENSITY
 NUMBER
         (CFS)
                 (MIN.) (INCH/HOUR)

      41.27
      14.88
      4.173

      43.68
      19.54
      3.501

    1
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 43.68 Tc(MIN.) = 19.54 TOTAL AREA(ACRES) = 33.0
 LONGEST FLOWPATH FROM NODE 25.00 TO NODE 23.00 = 1456.00 FEET.
******************
 FLOW PROCESS FROM NODE 23.00 TO NODE 22.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <
______
 ELEVATION DATA: UPSTREAM(FEET) = 430.90 DOWNSTREAM(FEET) = 419.00
 CHANNEL LENGTH THRU SUBAREA (FEET) = 395.00 CHANNEL SLOPE = 0.0301
 CHANNEL BASE(FEET) = 10.00 "Z" FACTOR = 5.000
 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 2.00
```

```
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.341
 *USER SPECIFIED (SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .3500
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 4.49
 AVERAGE FLOW DEPTH(FEET) = 0.74 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 21.00
 SUBAREA AREA(ACRES) = 3.79 SUBAREA RUNOFF(CFS) = 4.43
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.375
 TOTAL AREA(ACRES) = 36.8 PEAK FLOW RATE(CFS) = 46.12
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.74 FLOW VELOCITY(FEET/SEC.) = 4.51
 LONGEST FLOWPATH FROM NODE 25.00 TO NODE 22.00 = 1851.00 FEET.
*******************
 FLOW PROCESS FROM NODE 23.00 TO NODE 22.00 IS CODE =
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 21.00
 RAINFALL INTENSITY (INCH/HR) = 3.34
 TOTAL STREAM AREA(ACRES) = 36.78
 PEAK FLOW RATE (CFS) AT CONFLUENCE = 46.12
******************
 FLOW PROCESS FROM NODE 22.20 TO NODE 22.10 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
______
 *USER SPECIFIED (SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .3500
 S.C.S. CURVE NUMBER (AMC II) = 0
 INITIAL SUBAREA FLOW-LENGTH (FEET) =
 UPSTREAM ELEVATION (FEET) = 445.10
 DOWNSTREAM ELEVATION (FEET) = 445.00
 ELEVATION DIFFERENCE (FEET) = 0.10
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 0.063
 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN TO CALCULATION!
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 8.431
 NOTE: RAINFALL INTENSITY IS BASED ON To = 5-MINUTE.
 SUBAREA RUNOFF(CFS) = 0.30
 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) =
******************
 FLOW PROCESS FROM NODE
                    22.20 TO NODE
                                  22.10 IS CODE = 7
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE <<<<
______
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 19.49 RAIN INTENSITY(INCH/HOUR) = 3.51
```

```
TOTAL AREA(ACRES) = 2.40 TOTAL RUNOFF(CFS) = 4.03
************************
 FLOW PROCESS FROM NODE 22.10 TO NODE 22.00 IS CODE = 51
>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <
______
 ELEVATION DATA: UPSTREAM(FEET) = 445.00 DOWNSTREAM(FEET) = 419.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 98.00 CHANNEL SLOPE = 0.2653
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.494
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .3500
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.54
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 15.83
 AVERAGE FLOW DEPTH(FEET) = 0.38 TRAVEL TIME(MIN.) = 0.10
 Tc(MIN.) = 19.59
                             SUBAREA RUNOFF(CFS) = 1.01
 SUBAREA AREA(ACRES) = 0.83
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.446
 TOTAL AREA(ACRES) = 3.2 PEAK FLOW RATE(CFS) = 5.03
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.39 FLOW VELOCITY(FEET/SEC.) = 16.22
 LONGEST FLOWPATH FROM NODE 22.20 TO NODE 22.00 = 98.01 FEET.
******************
 FLOW PROCESS FROM NODE 22.10 TO NODE 22.00 IS CODE =
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION (MIN.) = 19.59
 RAINFALL INTENSITY(INCH/HR) = 3.49
 TOTAL STREAM AREA(ACRES) = 3.23
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.03
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR)
                                     AREA
                                     (ACRE)
          46.12 21.00 3.341
5.03 19.59 3.494
   1
                                      36.78
                                        3.23
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC
                         INTENSITY
    IBER (CFS) (MIN.) (INCH/HOUR)
1 49.13 19.59 3.494
 NUMBER
```

```
2 50.93 21.00 3.341
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 50.93 Tc(MIN.) = 21.00
TOTAL AREA(ACRES) = 40.0
                      25.00 TO NODE
                                   22.00 = 1851.00 FEET.
 LONGEST FLOWPATH FROM NODE
***************
 FLOW PROCESS FROM NODE 22.00 TO NODE 21.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
ELEVATION DATA: UPSTREAM(FEET) = 419.00 DOWNSTREAM(FEET) = 411.00
 CHANNEL LENGTH THRU SUBAREA (FEET) = 458.00 CHANNEL SLOPE = 0.0175
 CHANNEL BASE (FEET) = 40.00 "Z" FACTOR = 5.000
 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 5.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.088
 *USER SPECIFIED (SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .3500
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 54.65
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 2.80
 AVERAGE FLOW DEPTH(FEET) = 0.46 TRAVEL TIME(MIN.) = 2.72
 Tc(MIN.) = 23.72
 SUBAREA AREA(ACRES) = 6.88 SUBAREA RUNOFF(CFS) = 7.44
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.376
 TOTAL AREA(ACRES) = 46.9
                         PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.46 FLOW VELOCITY(FEET/SEC.) = 2.80
 LONGEST FLOWPATH FROM NODE 25.00 TO NODE 21.00 = 2309.00 FEET.
*****************
 FLOW PROCESS FROM NODE 21.00 TO NODE 21.10 IS CODE = 41
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 411.00 DOWNSTREAM(FEET) = 410.40
 FLOW LENGTH (FEET) = 30.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 27.0 INCH PIPE IS 15.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 11.38
 GIVEN PIPE DIAMETER (INCH) = 27.00 NUMBER OF PIPES = 2
 PIPE-FLOW(CFS) = 54.52
 PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN.) = 23.77
 LONGEST FLOWPATH FROM NODE 25.00 TO NODE
                                   21.10 = 2339.00 FEET.
****************
 FLOW PROCESS FROM NODE 21.10 TO NODE 20.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <
______
```

```
ELEVATION DATA: UPSTREAM(FEET) = 410.40 DOWNSTREAM(FEET) = 404.00
 CHANNEL LENGTH THRU SUBAREA (FEET) = 320.00 CHANNEL SLOPE = 0.0200
 CHANNEL BASE (FEET) = 30.00 "Z" FACTOR = 3.000
 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 5.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.959
 *USER SPECIFIED (SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .3500
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 57.28
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 3.36
 AVERAGE FLOW DEPTH(FEET) = 0.54 TRAVEL TIME(MIN.) = 1.59
 Tc(MIN.) = 25.35
 SUBAREA AREA(ACRES) = 5.33
                             SUBAREA RUNOFF (CFS) = 5.52
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.374
 TOTAL AREA(ACRES) = 52.2
                              PEAK FLOW RATE (CFS) = 57.75
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.54 FLOW VELOCITY(FEET/SEC.) = 3.35
 LONGEST FLOWPATH FROM NODE 25.00 TO NODE 20.00 = 2659.00 FEET.
______
 END OF STUDY SUMMARY:
                       52.2 TC(MIN.) =
 TOTAL AREA(ACRES) =
                                       25.35
 PEAK FLOW RATE(CFS) = 57.75
______
______
```

END OF RATIONAL METHOD ANALYSIS

В. PROPOSED UNDETAINED 100-YEAR HYDROLOGY RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL

(c) Copyright 1982-2012 Advanced Engineering Software (aes) Ver. 19.0 Release Date: 06/01/2012 License ID 1459

Analysis prepared by:

BHA Inc 5115 Avenida Encinas, Suite L Carlsbad CA 92008

* Proposed Undetained Condition Hydrology Analysis * 100 Year Storm Frequency **************** FILE NAME: 1049P100.DAT TIME/DATE OF STUDY: 13:20 01/22/2013 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* ******************* 107.00 IS CODE = 21 FLOW PROCESS FROM NODE 108.00 TO NODE ______ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS< ______ *USER SPECIFIED(SUBAREA):

bha, Inc.

```
USER-SPECIFIED RUNOFF COEFFICIENT = .3500
 S.C.S. CURVE NUMBER (AMC II) = 0
 INITIAL SUBAREA FLOW-LENGTH (FEET) =
 UPSTREAM ELEVATION(FEET) = 486.00
 DOWNSTREAM ELEVATION (FEET) = 485.70
 ELEVATION DIFFERENCE (FEET) = 0.30
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 11.318
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.978
 SUBAREA RUNOFF(CFS) = 0.03
 TOTAL AREA(ACRES) = 0.01 TOTAL RUNOFF(CFS) = 0.03
******************
 FLOW PROCESS FROM NODE 108.00 TO NODE 107.00 IS CODE = 7
______
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 11.32 RAIN INTENSITY(INCH/HOUR) = 4.98
 TOTAL AREA(ACRES) = 0.01 TOTAL RUNOFF(CFS) = 0.10
*******************
 FLOW PROCESS FROM NODE 107.00 TO NODE 106.00 IS CODE =
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <><<
______
 ELEVATION DATA: UPSTREAM(FEET) = 485.70 DOWNSTREAM(FEET) = 485.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 215.00 CHANNEL SLOPE = 0.0033
 CHANNEL BASE(FEET) = 130.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 1.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.479
 *USER SPECIFIED (SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .4600
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.42
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 0.16
 AVERAGE FLOW DEPTH(FEET) = 0.02 TRAVEL TIME(MIN.) = 22.04
 Tc(MIN.) = 33.36
 SUBAREA AREA(ACRES) = 0.47 SUBAREA RUNOFF(CFS) = 0.54
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.487
 TOTAL AREA(ACRES) = 0.5 PEAK FLOW RATE(CFS) = 0.59
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.03 FLOW VELOCITY(FEET/SEC.) = 0.17
 LONGEST FLOWPATH FROM NODE 108.00 TO NODE 106.00 =
                                              265.00 FEET.
*******************
 FLOW PROCESS FROM NODE 106.00 TO NODE 105.00 IS CODE = 61
   ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>> (STANDARD CURB SECTION USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 485.00 DOWNSTREAM ELEVATION(FEET) = 392.00
 STREET LENGTH(FEET) = 1315.00 CURB HEIGHT(INCHES) = 6.0
```

```
STREET HALFWIDTH(FEET) = 16.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.050
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0130
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.25
   HALFSTREET FLOOD WIDTH(FEET) = 6.35
   AVERAGE FLOW VELOCITY (FEET/SEC.) = 5.54
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.40
 STREET FLOW TRAVEL TIME (MIN.) = 3.95 Tc (MIN.) = 37.31
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.306
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .6300
 S.C.S. CURVE NUMBER (AMC II) = 0
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.611
 SUBAREA AREA(ACRES) = 3.18 SUBAREA RUNOFF(CFS) = 4.62
TOTAL AREA(ACRES) = 3.7 PEAK FLOW RATE(CFS) = 5.16
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.29 HALFSTREET FLOOD WIDTH(FEET) = 8.38
 FLOW VELOCITY (FEET/SEC.) = 6.29 DEPTH*VELOCITY (FT*FT/SEC.) = 1.85
 LONGEST FLOWPATH FROM NODE 108.00 TO NODE 105.00 = 1580.00 FEET.
******************
 FLOW PROCESS FROM NODE 106.00 TO NODE 105.00 IS CODE = 1
 _____
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 37.31
 RAINFALL INTENSITY (INCH/HR) = 2.31
 TOTAL STREAM AREA(ACRES) = 3.66
 PEAK FLOW RATE (CFS) AT CONFLUENCE = 5.16
******************
 FLOW PROCESS FROM NODE 122.00 TO NODE 121.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
______
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .5800
 S.C.S. CURVE NUMBER (AMC II) = 0
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 465.00
 DOWNSTREAM ELEVATION (FEET) = 457.00
```

```
ELEVATION DIFFERENCE (FEET) = 8.00
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 4.680
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 8.431
 NOTE: RAINFALL INTENSITY IS BASED ON To = 5-MINUTE.
 SUBAREA RUNOFF(CFS) = 0.41
 TOTAL AREA(ACRES) = 0.08 TOTAL RUNOFF(CFS) =
                                                0.41
*****************
 FLOW PROCESS FROM NODE 121.00 TO NODE 120.00 IS CODE = 61
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>> (STANDARD CURB SECTION USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 457.00 DOWNSTREAM ELEVATION(FEET) = 392.00
 STREET LENGTH(FEET) = 700.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 16.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.050
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0130
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.93
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.22
   HALFSTREET FLOOD WIDTH(FEET) = 4.63
   AVERAGE FLOW VELOCITY (FEET/SEC.) = 5.81
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.27
 STREET FLOW TRAVEL TIME (MIN.) = 2.01 Tc (MIN.) = 6.69
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.990
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .5100
 S.C.S. CURVE NUMBER (AMC II) = 0
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.516
 SUBAREA AREA(ACRES) = 0.85 SUBAREA RUNOFF(CFS) = 3.03
TOTAL AREA(ACRES) = 0.9 PEAK FLOW RATE(CFS) = 3.37
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.25 HALFSTREET FLOOD WIDTH(FEET) = 6.35
 FLOW VELOCITY (FEET/SEC.) = 6.45 DEPTH*VELOCITY (FT*FT/SEC.) = 1.63
 LONGEST FLOWPATH FROM NODE 122.00 TO NODE 120.00 = 800.00 FEET.
*******************
 FLOW PROCESS FROM NODE 120.00 TO NODE 105.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 389.70 DOWNSTREAM(FEET) = 389.00
 FLOW LENGTH (FEET) = 37.00 MANNING'S N = 0.011
```

```
DEPTH OF FLOW IN 12.0 INCH PIPE IS 6.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.51
 ESTIMATED PIPE DIAMETER (INCH) = 12.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 3.37
 PIPE TRAVEL TIME (MIN.) = 0.08 Tc (MIN.) =
                                            6.77
 LONGEST FLOWPATH FROM NODE 122.00 TO NODE 105.00 = 837.00 FEET.
**************
 FLOW PROCESS FROM NODE 120.00 TO NODE 105.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION (MIN.) = 6.77
 RAINFALL INTENSITY(INCH/HR) = 6.93
 TOTAL STREAM AREA(ACRES) = 0.93
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **

        STREAM
        RUNOFF
        Tc
        INTENSITY
        AREA

        NUMBER
        (CFS)
        (MIN.)
        (INCH/HOUR)
        (ACRE)

        1
        5.16
        37.31
        2.306
        3.6

        2
        3.37
        6.77
        6.935
        0.9

                                            0.93
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC INTENSITY
          (CFS) (MIN.) (INCH/HOUR)
4.30 6.77 6.935
6.28 37.31 2.306
 NUMBER
    1
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 6.28 Tc(MIN.) = 37.31
 TOTAL AREA(ACRES) = 4.6
 LONGEST FLOWPATH FROM NODE 108.00 TO NODE 105.00 = 1580.00 FEET.
******************
 FLOW PROCESS FROM NODE 105.00 TO NODE 104.00 IS CODE = 31
-----
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 389.00 DOWNSTREAM(FEET) = 376.00
 FLOW LENGTH (FEET) = 190.00 MANNING'S N = 0.011
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 6.6 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 14.20
 ESTIMATED PIPE DIAMETER (INCH) = 12.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 6.28
 PIPE TRAVEL TIME (MIN.) = 0.22 Tc (MIN.) = 37.54
 LONGEST FLOWPATH FROM NODE 108.00 TO NODE 104.00 = 1770.00 FEET.
```

```
******************
 FLOW PROCESS FROM NODE
                  104.10 TO NODE
                               104.00 \text{ IS CODE} = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
______
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.297
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .3500
 S.C.S. CURVE NUMBER (AMC II) = 0
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.5867
 SUBAREA AREA(ACRES) = 0.10 SUBAREA RUNOFF(CFS) =
                  4.7 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
                                        6.33
 TC(MIN.) = 37.54
************************
 FLOW PROCESS FROM NODE 104.00 TO NODE 103.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 374.30 DOWNSTREAM(FEET) = 374.10
 FLOW LENGTH (FEET) = 35.00 MANNING'S N = 0.011
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.0 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 5.59
 ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 6.33
 PIPE TRAVEL TIME (MIN.) = 0.10 Tc (MIN.) = 37.64
 LONGEST FLOWPATH FROM NODE 108.00 TO NODE
                                  103.00 =
                                          1805.00 FEET.
************************
 FLOW PROCESS FROM NODE 103.00 TO NODE 102.00 IS CODE = 51
   ______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 374.10 DOWNSTREAM(FEET) =
 CHANNEL LENGTH THRU SUBAREA (FEET) = 70.00 CHANNEL SLOPE = 0.0014
 CHANNEL BASE(FEET) = 110.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 1.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 6.33
 FLOW VELOCITY (FEET/SEC.) = 0.39 FLOW DEPTH (FEET) = 0.15
 TRAVEL TIME (MIN.) = 3.00 Tc (MIN.) = 40.64
 LONGEST FLOWPATH FROM NODE 108.00 TO NODE 102.00 = 1875.00 FEET.
*******************
 FLOW PROCESS FROM NODE 103.00 TO NODE 102.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 40.64
 RAINFALL INTENSITY(INCH/HR) = 2.18
```

```
TOTAL STREAM AREA(ACRES) = 4.70
 PEAK FLOW RATE (CFS) AT CONFLUENCE = 6.33
******************
 FLOW PROCESS FROM NODE 133.00 TO NODE 132.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
______
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .3500
 S.C.S. CURVE NUMBER (AMC II) = 0
 INITIAL SUBAREA FLOW-LENGTH (FEET) =
 UPSTREAM ELEVATION(FEET) = 450.00
 DOWNSTREAM ELEVATION(FEET) = 449.70
 ELEVATION DIFFERENCE (FEET) = 0.30
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 11.318
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.978
 SUBAREA RUNOFF(CFS) = 0.04
                   0.02 TOTAL RUNOFF(CFS) = 0.04
 TOTAL AREA(ACRES) =
*******************
 FLOW PROCESS FROM NODE 133.00 TO NODE 132.00 IS CODE =
______
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<
______
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 11.32 RAIN INTENSITY(INCH/HOUR) = 4.98
 TOTAL AREA(ACRES) = 0.02 TOTAL RUNOFF(CFS) =
******************
 FLOW PROCESS FROM NODE 132.00 TO NODE 131.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 449.70 DOWNSTREAM(FEET) = 448.70
 CHANNEL LENGTH THRU SUBAREA(FEET) = 200.00 CHANNEL SLOPE = 0.0050
 CHANNEL BASE(FEET) = 100.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 1.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.896
 *USER SPECIFIED (SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .4600
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.45
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 0.22
 AVERAGE FLOW DEPTH(FEET) = 0.02 TRAVEL TIME(MIN.) = 14.90
 Tc(MIN.) = 26.22
 SUBAREA AREA(ACRES) = 0.47
                           SUBAREA RUNOFF(CFS) = 0.63
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.478
 TOTAL AREA(ACRES) = 0.5 PEAK FLOW RATE(CFS) = 0.68
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.03 FLOW VELOCITY(FEET/SEC.) = 0.25
 LONGEST FLOWPATH FROM NODE 133.00 TO NODE 131.00 = 250.00 FEET.
```

```
*******************
                    131.00 TO NODE
 FLOW PROCESS FROM NODE
                                  130.10 \text{ IS CODE} = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 448.70 DOWNSTREAM(FEET) = 385.00
 CHANNEL LENGTH THRU SUBAREA (FEET) = 305.00 CHANNEL SLOPE = 0.2089
 CHANNEL BASE (FEET) = 0.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.866
 *USER SPECIFIED (SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .4400
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.18
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 11.92
 AVERAGE FLOW DEPTH(FEET) = 0.30 TRAVEL TIME(MIN.) = 0.43
 Tc(MIN.) = 26.64
 SUBAREA AREA(ACRES) = 2.37
                            SUBAREA RUNOFF(CFS) = 2.99
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.447
 TOTAL AREA(ACRES) = 2.9
                              PEAK FLOW RATE (CFS) = 3.67
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.37 FLOW VELOCITY(FEET/SEC.) = 13.45
 LONGEST FLOWPATH FROM NODE 133.00 TO NODE 130.10 =
*******************
 FLOW PROCESS FROM NODE 130.10 TO NODE 130.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 385.00 DOWNSTREAM(FEET) = 374.10
 CHANNEL LENGTH THRU SUBAREA(FEET) = 226.00 CHANNEL SLOPE = 0.0482
 CHANNEL BASE (FEET) = 0.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 3.67
 FLOW VELOCITY (FEET/SEC.) = 7.84 FLOW DEPTH (FEET) = 0.48
 TRAVEL TIME (MIN.) = 0.48 Tc (MIN.) = 27.13
 LONGEST FLOWPATH FROM NODE 133.00 TO NODE 130.00 = 781.00 FEET.
******************
 FLOW PROCESS FROM NODE 130.00 TO NODE 102.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <
______
 ELEVATION DATA: UPSTREAM(FEET) = 374.10 DOWNSTREAM(FEET) = 374.00
 CHANNEL LENGTH THRU SUBAREA (FEET) = 110.00 CHANNEL SLOPE = 0.0009
 CHANNEL BASE (FEET) = 110.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) =
                                       1.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.468
 *USER SPECIFIED (SUBAREA):
```

```
USER-SPECIFIED RUNOFF COEFFICIENT = .4000
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.15
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 0.28
 AVERAGE FLOW DEPTH(FEET) = 0.13 TRAVEL TIME(MIN.) = 6.46
 Tc(MIN.) = 33.58
 SUBAREA AREA(ACRES) = 0.98 SUBAREA RUNOFF(CFS) = 0.97
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.435
 TOTAL AREA(ACRES) = 3.8 PEAK FLOW RATE(CFS) = 4.12
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.13 FLOW VELOCITY(FEET/SEC.) = 0.28
 LONGEST FLOWPATH FROM NODE 133.00 TO NODE 102.00 =
                                                   891.00 FEET.
******************
 FLOW PROCESS FROM NODE 130.00 TO NODE 102.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION (MIN.) = 33.58
 RAINFALL INTENSITY(INCH/HR) = 2.47
 TOTAL STREAM AREA(ACRES) = 3.84
 PEAK FLOW RATE (CFS) AT CONFLUENCE = 4.12
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY AREA
NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)
1 6.33 40.64 2.182 4.7
2 4.12 33.58 2.468 3.8
                                        4.70
                                         3.84
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC INTENSITY
         (CFS) (MIN.) (INCH/HOUR)
9.72 33.58 2.468
9.98 40.64 2.182
 NUMBER
    1
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 9.98 Tc(MIN.) = 40.64
TOTAL AREA(ACRES) = 8.5
 LONGEST FLOWPATH FROM NODE 108.00 TO NODE 102.00 = 1875.00 FEET.
*******************
 FLOW PROCESS FROM NODE 102.00 TO NODE 101.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 371.00 DOWNSTREAM(FEET) = 357.80
```

```
FLOW LENGTH (FEET) = 150.00 MANNING'S N = 0.011
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 8.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 17.30
 ESTIMATED PIPE DIAMETER (INCH) = 12.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 9.98
 PIPE TRAVEL TIME (MIN.) = 0.14 Tc (MIN.) =
                                    40.79
 LONGEST FLOWPATH FROM NODE 108.00 TO NODE
                                     101.00 =
                                              2025.00 FEET.
************************
                    102.00 TO NODE
                                  101.00 IS CODE =
 FLOW PROCESS FROM NODE
-----
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 40.79
 RAINFALL INTENSITY(INCH/HR) = 2.18
 TOTAL STREAM AREA(ACRES) = 8.54
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
*******************
 FLOW PROCESS FROM NODE 152.00 TO NODE
                                 151.00 \text{ IS CODE} = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED (SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .3500
 S.C.S. CURVE NUMBER (AMC II) = 0
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 517.20
 DOWNSTREAM ELEVATION(FEET) = 502.00
ELEVATION DIFFERENCE(FEET) = 15.20
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 6.267
 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN To CALCULATION!
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.288
 SUBAREA RUNOFF(CFS) = 0.20
 TOTAL AREA(ACRES) =
                   0.08 TOTAL RUNOFF(CFS) =
*******************
 FLOW PROCESS FROM NODE 151.00 TO NODE
                                 150.00 \text{ IS CODE} = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 502.00 DOWNSTREAM(FEET) =
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1249.00 CHANNEL SLOPE = 0.1017
 CHANNEL BASE (FEET) = 10.00 "Z" FACTOR = 10.000
 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 1.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.377
 *USER SPECIFIED (SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .4400
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.14
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.76
```

```
AVERAGE FLOW DEPTH(FEET) = 0.13 TRAVEL TIME(MIN.) = 7.55
 Tc(MIN.) = 13.82
 SUBAREA AREA(ACRES) = 3.95 SUBAREA RUNOFF(CFS) = 7.61
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.438
 TOTAL AREA(ACRES) =
                   4.0
                                PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.19 FLOW VELOCITY(FEET/SEC.) = 3.50
 LONGEST FLOWPATH FROM NODE 152.00 TO NODE 150.00 = 1349.00 FEET.
******************
 FLOW PROCESS FROM NODE 150.00 TO NODE 101.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <
______
 ELEVATION DATA: UPSTREAM(FEET) = 375.00 DOWNSTREAM(FEET) = 357.80
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1298.00 CHANNEL SLOPE = 0.0133
 CHANNEL BASE (FEET) = 2.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 2.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.453
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .4000
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 20.11
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 3.52
 AVERAGE FLOW DEPTH(FEET) = 1.26 TRAVEL TIME(MIN.) = 6.14
 Tc(MIN.) = 19.95
 SUBAREA AREA(ACRES) = 17.75
                              SUBAREA RUNOFF (CFS) = 24.52
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.407
                               PEAK FLOW RATE(CFS) = 30.61
 TOTAL AREA(ACRES) = 21.8
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.54 FLOW VELOCITY(FEET/SEC.) = 3.92
 LONGEST FLOWPATH FROM NODE 152.00 TO NODE 101.00 = 2647.00 FEET.
************************
 FLOW PROCESS FROM NODE 150.00 TO NODE 101.00 IS CODE =
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION (MIN.) = 19.95
 RAINFALL INTENSITY(INCH/HR) = 3.45
 TOTAL STREAM AREA(ACRES) = 21.78
 PEAK FLOW RATE (CFS) AT CONFLUENCE = 30.61
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
                                      AREA
        (CFS) (MIN.) (INCH/HOUR) (ACRE)
9.98 40.79 2.177 8.54
30.61 19.95 3.453 21.78
 NUMBER
    1
                                       8.54
                                       21.78
```

```
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC
                        INTENSITY
         (CFS) (MIN.) (INCH/HOUR)
36.91 19.95 3.453
29.28 40.79 2.177
 NUMBER
    2.
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 36.91 Tc(MIN.) = 19.95
TOTAL AREA(ACRES) = 30.3
 LONGEST FLOWPATH FROM NODE 152.00 TO NODE
                                      101.00 =
                                               2647.00 FEET.
*******************
 FLOW PROCESS FROM NODE 101.00 TO NODE 100.00 IS CODE = 31
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 357.80 DOWNSTREAM(FEET) = 357.60
 FLOW LENGTH (FEET) = 10.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 27.0 INCH PIPE IS 19.4 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 12.08
 ESTIMATED PIPE DIAMETER (INCH) = 27.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 36.91
 PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 19.97
 LONGEST FLOWPATH FROM NODE 152.00 TO NODE
                                      100.00 =
                                               2657.00 FEET.
************************
 FLOW PROCESS FROM NODE 205.00 TO NODE 204.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .3500
 S.C.S. CURVE NUMBER (AMC II) = 0
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 526.50
 DOWNSTREAM ELEVATION(FEET) = 523.00
ELEVATION DIFFERENCE(FEET) = 3.50
 DOWNSTREAM ELEVATION (FEET) =
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.892
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.816
 SUBAREA RUNOFF(CFS) = 0.47
 TOTAL AREA(ACRES) =
                  0.23 TOTAL RUNOFF(CFS) =
******************
 FLOW PROCESS FROM NODE 204.00 TO NODE
                                   203.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
```

______ ELEVATION DATA: UPSTREAM(FEET) = 523.00 DOWNSTREAM(FEET) = 430.90

```
CHANNEL LENGTH THRU SUBAREA (FEET) = 1356.00 CHANNEL SLOPE = 0.0679
 CHANNEL BASE (FEET) = 10.00 "Z" FACTOR = 5.000
 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 5.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.136
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .3500
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.65
 AVERAGE FLOW DEPTH(FEET) = 0.26 TRAVEL TIME(MIN.) = 6.19
 Tc(MIN.) = 15.08
                           SUBAREA RUNOFF(CFS) = 19.69
                   13.60
 SUBAREA AREA(ACRES) =
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.350
 TOTAL AREA(ACRES) = 13.8
                              PEAK FLOW RATE (CFS) = 20.02
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.37 FLOW VELOCITY(FEET/SEC.) = 4.55
 LONGEST FLOWPATH FROM NODE 205.00 TO NODE 203.00 = 1456.00 FEET.
************************
 FLOW PROCESS FROM NODE 204.00 TO NODE 203.00 IS CODE =
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 15.08
 RAINFALL INTENSITY (INCH/HR) = 4.14
 TOTAL STREAM AREA(ACRES) = 13.83
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
*****************
 FLOW PROCESS FROM NODE 203.20 TO NODE 203.20 IS CODE = 7
______
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<
______
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 18.12 RAIN INTENSITY(INCH/HOUR) = 3.67
 TOTAL AREA(ACRES) = 16.20 TOTAL RUNOFF(CFS) = 24.26
******************
 FLOW PROCESS FROM NODE
                    203.10 TO NODE 203.10 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <
______
 ELEVATION DATA: UPSTREAM(FEET) = 455.00 DOWNSTREAM(FEET) = 430.90
 CHANNEL LENGTH THRU SUBAREA (FEET) = 98.00 CHANNEL SLOPE = 0.2459
 CHANNEL BASE (FEET) = 10.00 "Z" FACTOR = 5.000
 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 5.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.646
 *USER SPECIFIED (SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .3500
 S.C.S. CURVE NUMBER (AMC II) = 0
```

```
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 25.29
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 7.48
 AVERAGE FLOW DEPTH(FEET) = 0.29 TRAVEL TIME(MIN.) = 0.22
 Tc(MIN.) = 18.34
                               SUBAREA RUNOFF(CFS) = 2.07
 SUBAREA AREA(ACRES) = 1.62
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.402
 TOTAL AREA(ACRES) = 17.8
                                PEAK FLOW RATE(CFS) = 26.14
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.30 FLOW VELOCITY(FEET/SEC.) = 7.57
 LONGEST FLOWPATH FROM NODE 152.00 TO NODE 203.10 = 2745.00 FEET.
******************
 FLOW PROCESS FROM NODE 203.10 TO NODE 203.00 IS CODE =
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION (MIN.) = 18.34
 RAINFALL INTENSITY(INCH/HR) = 3.65
 TOTAL STREAM AREA(ACRES) = 17.82
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 26.14
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
1 20.02 15.08 4.136
2 26.14 18.34 3.646
                                       AREA
                                      (ACRE)
                                        13.83
                                         17.82
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC
                          INTENSITY
          (CFS) (MIN.) (INCH/HO
41.52 15.08 4.136
43.79 18.34 3.646
                  (MIN.) (INCH/HOUR)
 NUMBER
    1
    2
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 43.79 Tc(MIN.) = 18.34
TOTAL AREA(ACRES) = 31.7
 LONGEST FLOWPATH FROM NODE 152.00 TO NODE
                                        203.00 = 2745.00 FEET.
******************
 FLOW PROCESS FROM NODE 203.00 TO NODE 202.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <
______
 ELEVATION DATA: UPSTREAM(FEET) = 430.90 DOWNSTREAM(FEET) = 419.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 395.00 CHANNEL SLOPE = 0.0301
 CHANNEL BASE(FEET) = 10.00 "Z" FACTOR = 5.000
```

```
MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 5.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.469
 *USER SPECIFIED (SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .3500
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 45.14
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 4.47
 AVERAGE FLOW DEPTH(FEET) = 0.74 TRAVEL TIME(MIN.) = 1.47
 Tc(MIN.) = 19.81
 SUBAREA AREA(ACRES) = 2.23
                           SUBAREA RUNOFF(CFS) = 2.71
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.378
 TOTAL AREA(ACRES) = 33.9
                          PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.73 FLOW VELOCITY(FEET/SEC.) = 4.46
 LONGEST FLOWPATH FROM NODE 152.00 TO NODE 202.00 = 3140.00 FEET.
******************
 FLOW PROCESS FROM NODE
                    203.00 TO NODE
                                  202.00 \text{ IS CODE} = 1
-----
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 19.81
 RAINFALL INTENSITY (INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 33.88
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
*******************
 FLOW PROCESS FROM NODE 202.10 TO NODE 202.10 IS CODE = 7
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<
______
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 19.49 RAIN INTENSITY(INCH/HOUR) = 3.51
 TOTAL AREA(ACRES) = 2.40 TOTAL RUNOFF(CFS) =
*******************
 FLOW PROCESS FROM NODE 202.10 TO NODE 202.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 445.00 DOWNSTREAM(FEET) =
 CHANNEL LENGTH THRU SUBAREA(FEET) = 98.00 CHANNEL SLOPE = 0.2653
 CHANNEL BASE (FEET) = 0.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.494
 *USER SPECIFIED (SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .3500
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.54
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 15.83
```

```
AVERAGE FLOW DEPTH(FEET) = 0.38 TRAVEL TIME(MIN.) = 0.10
 Tc(MIN.) = 19.59
 SUBAREA AREA(ACRES) = 0.83 SUBAREA RUNOFF(CFS) = 1.01
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.446
 TOTAL AREA(ACRES) =
                  3.2
                              PEAK FLOW RATE (CFS) = 5.03
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.39 FLOW VELOCITY(FEET/SEC.) = 16.22
 LONGEST FLOWPATH FROM NODE 152.00 TO NODE 202.00 = 2843.00 FEET.
******************
 FLOW PROCESS FROM NODE 202.10 TO NODE 202.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION (MIN.) = 19.59
 RAINFALL INTENSITY(INCH/HR) = 3.49
 TOTAL STREAM AREA(ACRES) = 3.23
 PEAK FLOW RATE (CFS) AT CONFLUENCE = 5.03
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR)
                                     AREA
                                    (ACRE)
         44.37 19.81 3.469
5.03 19.59 3.494
                                     33.88
   1
                                       3.23
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC INTENSITY
 NUMBER
         (CFS)
                (MIN.) (INCH/HOUR)
         49.09 19.59 3.494
   1
         49.37 19.81
    2
                          3.469
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 49.37 Tc(MIN.) = 19.81
 TOTAL AREA(ACRES) = 37.1
 LONGEST FLOWPATH FROM NODE 152.00 TO NODE 202.00 = 3140.00 FEET.
*****
 FLOW PROCESS FROM NODE 202.00 TO NODE 201.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <
______
 ELEVATION DATA: UPSTREAM(FEET) = 419.00 DOWNSTREAM(FEET) = 411.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 458.00 CHANNEL SLOPE = 0.0175
 CHANNEL BASE (FEET) = 40.00 "Z" FACTOR = 5.000
 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 5.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.189
```

```
*USER SPECIFIED (SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .3500
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 51.93
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.76
 AVERAGE FLOW DEPTH(FEET) = 0.45 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 22.57
 SUBAREA AREA(ACRES) = 4.59
                           SUBAREA RUNOFF (CFS) = 5.12
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.380
 TOTAL AREA(ACRES) = 41.7
                             PEAK FLOW RATE (CFS) = 50.50
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.44 FLOW VELOCITY(FEET/SEC.) = 2.73
 LONGEST FLOWPATH FROM NODE 152.00 TO NODE 201.00 =
                                            3598.00 FEET.
******************
 FLOW PROCESS FROM NODE
                   202.00 TO NODE
                                201.00 \text{ IS CODE} = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 22.57
 RAINFALL INTENSITY(INCH/HR) = 3.19
 TOTAL STREAM AREA(ACRES) = 41.70
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
*******************
 FLOW PROCESS FROM NODE 258.00 TO NODE 257.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
______
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .3500
 S.C.S. CURVE NUMBER (AMC II) = 0
 INITIAL SUBAREA FLOW-LENGTH (FEET) =
 UPSTREAM ELEVATION(FEET) = 491.00
 DOWNSTREAM ELEVATION(FEET) = 490.70
ELEVATION DIFFERENCE(FEET) = 0.30
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 11.318
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.978
 SUBAREA RUNOFF(CFS) = 0.05
                  0.03 TOTAL RUNOFF(CFS) = 0.05
 TOTAL AREA(ACRES) =
******************
 FLOW PROCESS FROM NODE 258.00 TO NODE 257.00 IS CODE =
______
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<
______
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 11.32 RAIN INTENSITY(INCH/HOUR) = 4.98
 TOTAL AREA(ACRES) = 0.03 TOTAL RUNOFF(CFS) =
                                         0.10
********************
```

```
FLOW PROCESS FROM NODE 257.00 TO NODE 256.00 IS CODE = 51
>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 490.70 DOWNSTREAM(FEET) = 482.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 565.00 CHANNEL SLOPE = 0.0154
 CHANNEL BASE (FEET) = 32.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 1.00
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.866
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .4300
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.85
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 0.61
 AVERAGE FLOW DEPTH(FEET) = 0.04 TRAVEL TIME(MIN.) = 15.32
 Tc(MIN.) = 26.63
 SUBAREA AREA(ACRES) = 1.10 SUBAREA RUNOFF(CFS) = 1.36
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.437
 TOTAL AREA(ACRES) = 1.1 PEAK FLOW RATE(CFS) = 1.41
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.06 FLOW VELOCITY(FEET/SEC.) = 0.69
 LONGEST FLOWPATH FROM NODE 258.00 TO NODE 256.00 = 615.00 FEET.
*******************
 FLOW PROCESS FROM NODE 256.00 TO NODE 255.00 IS CODE = 61
-----
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STANDARD CURB SECTION USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 482.00 DOWNSTREAM ELEVATION(FEET) = 464.00
 STREET LENGTH(FEET) = 560.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 16.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL (DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL (DECIMAL) = 0.050
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0130
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                  3.78
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.30
   HALFSTREET FLOOD WIDTH(FEET) = 8.70
   AVERAGE FLOW VELOCITY (FEET/SEC.) = 4.32
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.30
 STREET FLOW TRAVEL TIME (MIN.) = 2.16 Tc(MIN.) = 28.79
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.726
 *USER SPECIFIED (SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .5000
```

```
S.C.S. CURVE NUMBER (AMC II) = 0
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.485
 SUBAREA AREA(ACRES) = 3.47 SUBAREA RUNOFF(CFS) = 4.73
                   4.6
 TOTAL AREA(ACRES) =
                          PEAK FLOW RATE(CFS) = 6.07
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.34 HALFSTREET FLOOD WIDTH(FEET) = 10.73
 FLOW VELOCITY (FEET/SEC.) = 4.79 DEPTH*VELOCITY (FT*FT/SEC.) = 1.63
 LONGEST FLOWPATH FROM NODE 258.00 TO NODE 255.00 = 1175.00 FEET.
*******************
 FLOW PROCESS FROM NODE 255.00 TO NODE 254.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 461.00 DOWNSTREAM(FEET) = 456.00
 FLOW LENGTH (FEET) = 260.00 MANNING'S N = 0.011
 DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.75
 ESTIMATED PIPE DIAMETER (INCH) = 15.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 6.07
 PIPE TRAVEL TIME (MIN.) = 0.50 Tc (MIN.) = 29.29
 LONGEST FLOWPATH FROM NODE 258.00 TO NODE 254.00 = 1435.00 FEET.
*******************
 FLOW PROCESS FROM NODE 254.00 TO NODE 253.00 IS CODE = 51
._____
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <
______
 ELEVATION DATA: UPSTREAM(FEET) = 456.00 DOWNSTREAM(FEET) = 434.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 142.00 CHANNEL SLOPE = 0.1549
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 6.07
 FLOW VELOCITY (FEET/SEC.) = 13.74 FLOW DEPTH (FEET) = 0.47
 TRAVEL TIME (MIN.) = 0.17 Tc (MIN.) = 29.46
 LONGEST FLOWPATH FROM NODE 258.00 TO NODE 253.00 = 1577.00 FEET.
******************
 FLOW PROCESS FROM NODE 253.00 TO NODE 252.10 IS CODE = 31
-----
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 530.60 DOWNSTREAM(FEET) = 515.76
 FLOW LENGTH (FEET) = 14.30 MANNING'S N = 0.011
 DEPTH OF FLOW IN 6.0 INCH PIPE IS 4.5 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 38.06
 ESTIMATED PIPE DIAMETER (INCH) = 6.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 6.07
 PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 29.47
 LONGEST FLOWPATH FROM NODE 258.00 TO NODE 252.10 = 1591.30 FEET.
```

```
********************
 FLOW PROCESS FROM NODE
                   252.10 TO NODE
                                 252.00 \text{ IS CODE} = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 515.76 DOWNSTREAM(FEET) = 515.60
 FLOW LENGTH (FEET) = 13.00 MANNING'S N = 0.011
 DEPTH OF FLOW IN 15.0 INCH PIPE IS 9.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.35
 ESTIMATED PIPE DIAMETER (INCH) = 15.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 6.07
 PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 29.50
 LONGEST FLOWPATH FROM NODE 258.00 TO NODE
                                    252.00 = 1604.30 FEET.
******************
 FLOW PROCESS FROM NODE 252.00 TO NODE 251.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 415.60 DOWNSTREAM(FEET) = 415.00
 CHANNEL LENGTH THRU SUBAREA (FEET) = 40.00 CHANNEL SLOPE = 0.0150
 CHANNEL BASE (FEET) = 27.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 1.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.655
 *USER SPECIFIED (SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .3500
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 6.19
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.37
 AVERAGE FLOW DEPTH(FEET) = 0.16 TRAVEL TIME(MIN.) = 0.49
 Tc(MIN.) = 29.98
 SUBAREA AREA(ACRES) = 0.25 SUBAREA RUNOFF(CFS) = 0.23
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.478
                         PEAK FLOW RATE(CFS) = 6.15
 TOTAL AREA(ACRES) = 4.8
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.16 FLOW VELOCITY(FEET/SEC.) = 1.36
 LONGEST FLOWPATH FROM NODE 258.00 TO NODE 251.00 = 1644.30 FEET.
******************
 FLOW PROCESS FROM NODE 251.00 TO NODE 250.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 411.50 DOWNSTREAM(FEET) = 411.00
 FLOW LENGTH (FEET) = 21.00 MANNING'S N = 0.011
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 9.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 9.18
 ESTIMATED PIPE DIAMETER (INCH) = 12.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 6.15
```

```
PIPE TRAVEL TIME (MIN.) = 0.04 Tc (MIN.) = 30.02
 LONGEST FLOWPATH FROM NODE 258.00 TO NODE 250.00 = 1665.30 FEET.
*******************
 FLOW PROCESS FROM NODE 250.00 TO NODE 201.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION (MIN.) = 30.02
 RAINFALL INTENSITY(INCH/HR) = 2.65
 TOTAL STREAM AREA(ACRES) = 4.85
 PEAK FLOW RATE (CFS) AT CONFLUENCE = 6.15
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
                                       AREA
                                      (ACRE)

      50.50
      22.57
      3.189

      6.15
      30.02
      2.653

   1
                                       41.70
    2
                                         4.85
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC INTENSITY
          (CFS)
                  (MIN.) (INCH/HOUR)
 NUMBER
          55.13 22.57 3.189
48.17 30.02 2.653
   1
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 55.13 Tc(MIN.) = 22.57
TOTAL AREA(ACRES) = 46.5
 LONGEST FLOWPATH FROM NODE 152.00 TO NODE 201.00 = 3598.00 FEET.
************************
 FLOW PROCESS FROM NODE 201.00 TO NODE 201.10 IS CODE = 41
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 411.00 DOWNSTREAM(FEET) = 410.40
 FLOW LENGTH (FEET) = 30.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 27.0 INCH PIPE IS 15.8 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 11.41
 GIVEN PIPE DIAMETER (INCH) = 27.00 NUMBER OF PIPES = 2
 PIPE-FLOW(CFS) = 55.13
 PIPE TRAVEL TIME (MIN.) = 0.04 Tc (MIN.) = 22.62
 LONGEST FLOWPATH FROM NODE 152.00 TO NODE 201.10 = 3628.00 FEET.
******************
 FLOW PROCESS FROM NODE 201.10 TO NODE 200.00 IS CODE = 51
```

```
>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 410.40 DOWNSTREAM(FEET) = 404.00
 CHANNEL LENGTH THRU SUBAREA (FEET) = 320.00 CHANNEL SLOPE = 0.0200
 CHANNEL BASE(FEET) = 30.00 "Z" FACTOR = 3.000
 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 5.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.049
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .3500
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.36
 AVERAGE FLOW DEPTH(FEET) = 0.54 TRAVEL TIME(MIN.) = 1.59
 Tc(MIN.) =
          24.20
 SUBAREA AREA(ACRES) = 5.27
                           SUBAREA RUNOFF(CFS) = 5.62
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.386
 TOTAL AREA(ACRES) = 51.8 PEAK FLOW RATE(CFS) = 60.96
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.56 FLOW VELOCITY(FEET/SEC.) = 3.44
 LONGEST FLOWPATH FROM NODE 152.00 TO NODE 200.00 = 3948.00 FEET.
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) =
                      51.8 \text{ TC(MIN.)} = 24.20
 PEAK FLOW RATE (CFS) = 60.96
______
______
```

bha, Inc.

END OF RATIONAL METHOD ANALYSIS

C. PROPOSED DETAINED 100-YEAR HYDROLOGY

bha, Inc.

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL

(c) Copyright 1982-2012 Advanced Engineering Software (aes) Ver. 19.0 Release Date: 06/01/2012 License ID 1459

Analysis prepared by:

BHA Inc 5115 Avenida Encinas, Suite L Carlsbad CA 92008

* Proposed Detained Condition Hydrology Analysis * 100 Year Storm Frequency **************** FILE NAME: 1049D100.DAT TIME/DATE OF STUDY: 13:47 01/22/2013 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* ******************* 107.00 IS CODE = 21 FLOW PROCESS FROM NODE 108.00 TO NODE ______ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS< ______ *USER SPECIFIED(SUBAREA):

bha, Inc.

```
USER-SPECIFIED RUNOFF COEFFICIENT = .3500
 S.C.S. CURVE NUMBER (AMC II) = 0
 INITIAL SUBAREA FLOW-LENGTH (FEET) =
 UPSTREAM ELEVATION(FEET) = 486.00
 DOWNSTREAM ELEVATION (FEET) = 485.70
 ELEVATION DIFFERENCE (FEET) = 0.30
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 11.318
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.978
 SUBAREA RUNOFF(CFS) = 0.03
 TOTAL AREA(ACRES) = 0.01 TOTAL RUNOFF(CFS) = 0.03
******************
 FLOW PROCESS FROM NODE 108.00 TO NODE 107.00 IS CODE = 7
______
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 11.32 RAIN INTENSITY(INCH/HOUR) = 4.98
 TOTAL AREA(ACRES) = 0.01 TOTAL RUNOFF(CFS) = 0.10
*******************
 FLOW PROCESS FROM NODE 107.00 TO NODE 106.00 IS CODE =
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <><<
______
 ELEVATION DATA: UPSTREAM(FEET) = 485.70 DOWNSTREAM(FEET) = 485.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 215.00 CHANNEL SLOPE = 0.0033
 CHANNEL BASE(FEET) = 130.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 1.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.479
 *USER SPECIFIED (SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .4600
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.42
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 0.16
 AVERAGE FLOW DEPTH(FEET) = 0.02 TRAVEL TIME(MIN.) = 22.04
 Tc(MIN.) = 33.36
 SUBAREA AREA(ACRES) = 0.47 SUBAREA RUNOFF(CFS) = 0.54
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.487
 TOTAL AREA(ACRES) = 0.5 PEAK FLOW RATE(CFS) = 0.59
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.03 FLOW VELOCITY(FEET/SEC.) = 0.17
 LONGEST FLOWPATH FROM NODE 108.00 TO NODE 106.00 =
                                              265.00 FEET.
*******************
 FLOW PROCESS FROM NODE 106.00 TO NODE 105.00 IS CODE = 61
   ______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>> (STANDARD CURB SECTION USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 485.00 DOWNSTREAM ELEVATION(FEET) = 392.00
 STREET LENGTH(FEET) = 1315.00 CURB HEIGHT(INCHES) = 6.0
```

```
STREET HALFWIDTH(FEET) = 16.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.050
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0130
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.25
   HALFSTREET FLOOD WIDTH(FEET) = 6.35
   AVERAGE FLOW VELOCITY (FEET/SEC.) = 5.54
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.40
 STREET FLOW TRAVEL TIME (MIN.) = 3.95 Tc (MIN.) = 37.31
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.306
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .6300
 S.C.S. CURVE NUMBER (AMC II) = 0
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.611
 SUBAREA AREA(ACRES) = 3.18 SUBAREA RUNOFF(CFS) = 4.62
TOTAL AREA(ACRES) = 3.7 PEAK FLOW RATE(CFS) = 5.16
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.29 HALFSTREET FLOOD WIDTH(FEET) = 8.38
 FLOW VELOCITY (FEET/SEC.) = 6.29 DEPTH*VELOCITY (FT*FT/SEC.) = 1.85
 LONGEST FLOWPATH FROM NODE 108.00 TO NODE 105.00 = 1580.00 FEET.
******************
 FLOW PROCESS FROM NODE 106.00 TO NODE 105.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 37.31
 RAINFALL INTENSITY (INCH/HR) = 2.31
 TOTAL STREAM AREA(ACRES) = 3.66
 PEAK FLOW RATE (CFS) AT CONFLUENCE = 5.16
*******************
 FLOW PROCESS FROM NODE 122.00 TO NODE 121.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
______
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .5800
 S.C.S. CURVE NUMBER (AMC II) = 0
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 465.00
 DOWNSTREAM ELEVATION (FEET) = 457.00
```

```
ELEVATION DIFFERENCE (FEET) = 8.00
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 4.680
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 8.431
 NOTE: RAINFALL INTENSITY IS BASED ON To = 5-MINUTE.
 SUBAREA RUNOFF(CFS) = 0.41
 TOTAL AREA(ACRES) = 0.08 TOTAL RUNOFF(CFS) =
                                                0.41
******************
 FLOW PROCESS FROM NODE 121.00 TO NODE 120.00 IS CODE = 61
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>> (STANDARD CURB SECTION USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 457.00 DOWNSTREAM ELEVATION(FEET) = 392.00
 STREET LENGTH(FEET) = 700.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 16.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.050
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0130
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.93
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.22
   HALFSTREET FLOOD WIDTH(FEET) = 4.63
   AVERAGE FLOW VELOCITY (FEET/SEC.) = 5.81
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.27
 STREET FLOW TRAVEL TIME (MIN.) = 2.01 Tc (MIN.) = 6.69
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.990
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .5100
 S.C.S. CURVE NUMBER (AMC II) = 0
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.516
 SUBAREA AREA(ACRES) = 0.85 SUBAREA RUNOFF(CFS) = 3.03
TOTAL AREA(ACRES) = 0.9 PEAK FLOW RATE(CFS) = 3.37
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.25 HALFSTREET FLOOD WIDTH(FEET) = 6.35
 FLOW VELOCITY (FEET/SEC.) = 6.45 DEPTH*VELOCITY (FT*FT/SEC.) = 1.63
 LONGEST FLOWPATH FROM NODE 122.00 TO NODE 120.00 = 800.00 FEET.
*******************
 FLOW PROCESS FROM NODE 120.00 TO NODE 105.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 389.70 DOWNSTREAM(FEET) = 389.00
 FLOW LENGTH (FEET) = 37.00 MANNING'S N = 0.011
```

```
DEPTH OF FLOW IN 12.0 INCH PIPE IS 6.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.51
 ESTIMATED PIPE DIAMETER (INCH) = 12.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 3.37
 PIPE TRAVEL TIME (MIN.) = 0.08 Tc (MIN.) =
                                            6.77
 LONGEST FLOWPATH FROM NODE 122.00 TO NODE 105.00 = 837.00 FEET.
*************
 FLOW PROCESS FROM NODE 120.00 TO NODE 105.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION (MIN.) = 6.77
 RAINFALL INTENSITY(INCH/HR) = 6.93
 TOTAL STREAM AREA(ACRES) = 0.93
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **

        STREAM
        RUNOFF
        Tc
        INTENSITY
        AREA

        NUMBER
        (CFS)
        (MIN.)
        (INCH/HOUR)
        (ACRE)

        1
        5.16
        37.31
        2.306
        3.6

        2
        3.37
        6.77
        6.935
        0.9

                                            0.93
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC INTENSITY
          (CFS) (MIN.) (INCH/HOUR)
4.30 6.77 6.935
6.28 37.31 2.306
 NUMBER
    1
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 6.28 Tc(MIN.) = 37.31
 TOTAL AREA(ACRES) = 4.6
 LONGEST FLOWPATH FROM NODE 108.00 TO NODE 105.00 = 1580.00 FEET.
******************
 FLOW PROCESS FROM NODE 105.00 TO NODE 104.00 IS CODE = 31
-----
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 389.00 DOWNSTREAM(FEET) = 376.00
 FLOW LENGTH (FEET) = 190.00 MANNING'S N = 0.011
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 6.6 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 14.20
 ESTIMATED PIPE DIAMETER (INCH) = 12.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 6.28
 PIPE TRAVEL TIME (MIN.) = 0.22 Tc (MIN.) = 37.54
 LONGEST FLOWPATH FROM NODE 108.00 TO NODE 104.00 = 1770.00 FEET.
```

```
********************
 FLOW PROCESS FROM NODE
                  104.10 TO NODE
                               104.00 \text{ IS CODE} = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
______
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.297
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .3500
 S.C.S. CURVE NUMBER (AMC II) = 0
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.5867
 SUBAREA AREA(ACRES) = 0.10 SUBAREA RUNOFF(CFS) =
                  4.7 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
                                        6.33
 TC(MIN.) = 37.54
***********************
 FLOW PROCESS FROM NODE 104.00 TO NODE 103.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 374.30 DOWNSTREAM(FEET) = 374.10
 FLOW LENGTH (FEET) = 35.00 MANNING'S N = 0.011
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.0 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 5.59
 ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 6.33
 PIPE TRAVEL TIME (MIN.) = 0.10 Tc (MIN.) = 37.64
 LONGEST FLOWPATH FROM NODE 108.00 TO NODE
                                  103.00 =
                                          1805.00 FEET.
************************
 FLOW PROCESS FROM NODE 103.00 TO NODE 102.00 IS CODE = 51
   ______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 374.10 DOWNSTREAM(FEET) =
 CHANNEL LENGTH THRU SUBAREA (FEET) = 70.00 CHANNEL SLOPE = 0.0014
 CHANNEL BASE(FEET) = 110.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 1.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 6.33
 FLOW VELOCITY (FEET/SEC.) = 0.39 FLOW DEPTH (FEET) = 0.15
 TRAVEL TIME (MIN.) = 3.00 Tc (MIN.) = 40.64
 LONGEST FLOWPATH FROM NODE 108.00 TO NODE 102.00 = 1875.00 FEET.
*******************
 FLOW PROCESS FROM NODE 103.00 TO NODE 102.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 40.64
 RAINFALL INTENSITY(INCH/HR) = 2.18
```

```
TOTAL STREAM AREA(ACRES) = 4.70
 PEAK FLOW RATE (CFS) AT CONFLUENCE = 6.33
******************
 FLOW PROCESS FROM NODE 133.00 TO NODE 132.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
______
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .3500
 S.C.S. CURVE NUMBER (AMC II) = 0
 INITIAL SUBAREA FLOW-LENGTH (FEET) =
 UPSTREAM ELEVATION(FEET) = 450.00
 DOWNSTREAM ELEVATION (FEET) = 449.70
 ELEVATION DIFFERENCE (FEET) = 0.30
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 11.318
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.978
 SUBAREA RUNOFF(CFS) = 0.04
                   0.02 TOTAL RUNOFF(CFS) = 0.04
 TOTAL AREA(ACRES) =
*******************
 FLOW PROCESS FROM NODE 133.00 TO NODE 132.00 IS CODE =
______
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<
______
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 11.32 RAIN INTENSITY(INCH/HOUR) = 4.98
 TOTAL AREA(ACRES) = 0.02 TOTAL RUNOFF(CFS) =
*******************
 FLOW PROCESS FROM NODE 132.00 TO NODE 131.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 449.70 DOWNSTREAM(FEET) = 448.70
 CHANNEL LENGTH THRU SUBAREA(FEET) = 200.00 CHANNEL SLOPE = 0.0050
 CHANNEL BASE(FEET) = 100.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 1.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.896
 *USER SPECIFIED (SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .4600
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.45
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 0.22
 AVERAGE FLOW DEPTH(FEET) = 0.02 TRAVEL TIME(MIN.) = 14.90
 Tc(MIN.) = 26.22
 SUBAREA AREA(ACRES) = 0.47
                           SUBAREA RUNOFF(CFS) = 0.63
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.478
 TOTAL AREA(ACRES) = 0.5 PEAK FLOW RATE(CFS) = 0.68
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.03 FLOW VELOCITY(FEET/SEC.) = 0.25
 LONGEST FLOWPATH FROM NODE 133.00 TO NODE 131.00 = 250.00 FEET.
```

```
********************
                    131.00 TO NODE
 FLOW PROCESS FROM NODE
                                  130.10 \text{ IS CODE} = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 448.70 DOWNSTREAM(FEET) = 385.00
 CHANNEL LENGTH THRU SUBAREA (FEET) = 305.00 CHANNEL SLOPE = 0.2089
 CHANNEL BASE (FEET) = 0.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.866
 *USER SPECIFIED (SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .4400
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.18
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 11.92
 AVERAGE FLOW DEPTH(FEET) = 0.30 TRAVEL TIME(MIN.) = 0.43
 Tc(MIN.) = 26.64
 SUBAREA AREA(ACRES) = 2.37
                            SUBAREA RUNOFF(CFS) = 2.99
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.447
 TOTAL AREA(ACRES) = 2.9
                              PEAK FLOW RATE (CFS) = 3.67
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.37 FLOW VELOCITY(FEET/SEC.) = 13.45
 LONGEST FLOWPATH FROM NODE 133.00 TO NODE 130.10 =
*******************
 FLOW PROCESS FROM NODE 130.10 TO NODE 130.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 385.00 DOWNSTREAM(FEET) = 374.10
 CHANNEL LENGTH THRU SUBAREA(FEET) = 226.00 CHANNEL SLOPE = 0.0482
 CHANNEL BASE (FEET) = 0.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 3.67
 FLOW VELOCITY (FEET/SEC.) = 7.84 FLOW DEPTH (FEET) = 0.48
 TRAVEL TIME (MIN.) = 0.48 Tc (MIN.) = 27.13
 LONGEST FLOWPATH FROM NODE 133.00 TO NODE 130.00 = 781.00 FEET.
******************
 FLOW PROCESS FROM NODE 130.00 TO NODE 102.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <
______
 ELEVATION DATA: UPSTREAM(FEET) = 374.10 DOWNSTREAM(FEET) = 374.00
 CHANNEL LENGTH THRU SUBAREA (FEET) = 110.00 CHANNEL SLOPE = 0.0009
 CHANNEL BASE (FEET) = 110.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) =
                                       1.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.468
 *USER SPECIFIED (SUBAREA):
```

```
USER-SPECIFIED RUNOFF COEFFICIENT = .4000
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.15
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 0.28
 AVERAGE FLOW DEPTH(FEET) = 0.13 TRAVEL TIME(MIN.) = 6.46
 Tc(MIN.) = 33.58
 SUBAREA AREA(ACRES) = 0.98 SUBAREA RUNOFF(CFS) = 0.97
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.435
 TOTAL AREA(ACRES) = 3.8 PEAK FLOW RATE(CFS) = 4.12
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.13 FLOW VELOCITY(FEET/SEC.) = 0.28
 LONGEST FLOWPATH FROM NODE 133.00 TO NODE 102.00 =
                                                  891.00 FEET.
******************
 FLOW PROCESS FROM NODE 130.00 TO NODE 102.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION (MIN.) = 33.58
 RAINFALL INTENSITY(INCH/HR) = 2.47
 TOTAL STREAM AREA(ACRES) = 3.84
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.12
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY

NUMBER (CFS) (MIN.) (INCH/HOUR)

1 6.33 40.64 2.182
2 4.12 33.58 2.468
                                      AREA
                                      (ACRE)
                                       4.70
                                         3.84
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC INTENSITY
         (CFS) (MIN.) (INCH/HOUR)
9.72 33.58 2.468
9.98 40.64 2.182
 NUMBER
    1
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 9.98 Tc(MIN.) = 40.64
 TOTAL AREA(ACRES) = 8.5
 LONGEST FLOWPATH FROM NODE 108.00 TO NODE 102.00 = 1875.00 FEET.
*******************
 FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 7
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE <<<<
______
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 40.64 RAIN INTENSITY(INCH/HOUR) = 2.18
```

```
TOTAL AREA(ACRES) = 8.54 TOTAL RUNOFF(CFS) = 1.62
************************
 FLOW PROCESS FROM NODE 102.00 TO NODE 101.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 371.00 DOWNSTREAM(FEET) = 357.80
 FLOW LENGTH (FEET) = 150.00 MANNING'S N = 0.011
 DEPTH OF FLOW IN 6.0 INCH PIPE IS 4.2 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 10.97
 ESTIMATED PIPE DIAMETER (INCH) = 6.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 1.62
 PIPE TRAVEL TIME (MIN.) = 0.23 Tc (MIN.) =
                                    40.87
 LONGEST FLOWPATH FROM NODE 108.00 TO NODE 101.00 = 2025.00 FEET.
*******************
 FLOW PROCESS FROM NODE
                    102.00 TO NODE
                                 101.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 40.87
 RAINFALL INTENSITY (INCH/HR) =
 TOTAL STREAM AREA(ACRES) = 8.54
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
*******************
 FLOW PROCESS FROM NODE 152.00 TO NODE
                                 151.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .3500
 S.C.S. CURVE NUMBER (AMC II) = 0
 INITIAL SUBAREA FLOW-LENGTH (FEET) =
 UPSTREAM ELEVATION(FEET) = 517.20
 DOWNSTREAM ELEVATION (FEET) = 502.00
 ELEVATION DIFFERENCE (FEET) = 15.20
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 6.267
 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN TO CALCULATION!
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.288
 SUBAREA RUNOFF(CFS) = 0.20
                  0.08 TOTAL RUNOFF(CFS) =
 TOTAL AREA(ACRES) =
*****************
 FLOW PROCESS FROM NODE 151.00 TO NODE
                                 150.00 \text{ IS CODE} = 51
_____
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 502.00 DOWNSTREAM(FEET) = 375.00
```

```
CHANNEL LENGTH THRU SUBAREA(FEET) = 1249.00 CHANNEL SLOPE = 0.1017
 CHANNEL BASE (FEET) = 10.00 "Z" FACTOR = 10.000
 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 1.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.377
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .4400
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.14
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.76
 AVERAGE FLOW DEPTH(FEET) = 0.13 TRAVEL TIME(MIN.) =
 Tc(MIN.) = 13.82
 SUBAREA AREA(ACRES) = 3.95 SUBAREA RUNOFF(CFS) = 7.61
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.438
 TOTAL AREA(ACRES) = 4.0
                                PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.19 FLOW VELOCITY(FEET/SEC.) = 3.50
 LONGEST FLOWPATH FROM NODE 152.00 TO NODE 150.00 = 1349.00 FEET.
******************
 FLOW PROCESS FROM NODE 150.00 TO NODE 101.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 375.00 DOWNSTREAM(FEET) = 357.80
 CHANNEL LENGTH THRU SUBAREA(FEET) = 1298.00 CHANNEL SLOPE = 0.0133
 CHANNEL BASE(FEET) = 2.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 2.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.453
 *USER SPECIFIED (SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .4000
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 20.11
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 3.52
 AVERAGE FLOW DEPTH(FEET) = 1.26 TRAVEL TIME(MIN.) = 6.14
 Tc(MIN.) = 19.95
 SUBAREA AREA(ACRES) = 17.75 SUBAREA RUNOFF(CFS) = 24.52
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.407
 TOTAL AREA(ACRES) = 21.8
                               PEAK FLOW RATE(CFS) = 30.61
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 1.54 FLOW VELOCITY(FEET/SEC.) = 3.92
 LONGEST FLOWPATH FROM NODE 152.00 TO NODE 101.00 = 2647.00 FEET.
******************
 FLOW PROCESS FROM NODE 150.00 TO NODE 101.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION (MIN.) = 19.95
```

```
RAINFALL INTENSITY(INCH/HR) = 3.45
 TOTAL STREAM AREA(ACRES) = 21.78
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **

        STREAM
        RUNOFF
        Tc
        INTENSITY

        NUMBER
        (CFS)
        (MIN.)
        (INCH/HOUR)

        1
        1.62
        40.87
        2.175

        2
        30.61
        19.95
        3.453

                                           (ACRE)
                                             21.78
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC INTENSITY
          (CFS) (MIN.) (INCH/HOUR)
31.41 19.95 3.453
20.90 40.87 2.175
 NUMBER
     1
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 31.41 Tc(MIN.) = 19.95
 TOTAL AREA(ACRES) = 30.3
 LONGEST FLOWPATH FROM NODE 152.00 TO NODE 101.00 = 2647.00 FEET.
******************
                                         100.00 IS CODE = 31
 FLOW PROCESS FROM NODE
                        101.00 TO NODE
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 357.80 DOWNSTREAM(FEET) = 357.60
 FLOW LENGTH (FEET) = 10.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 27.0 INCH PIPE IS 17.2 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 11.74
 ESTIMATED PIPE DIAMETER (INCH) = 27.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 31.41
 PIPE TRAVEL TIME (MIN.) = 0.01 Tc (MIN.) = 19.97
 LONGEST FLOWPATH FROM NODE 152.00 TO NODE
                                              100.00 =
******************
 FLOW PROCESS FROM NODE 205.00 TO NODE 204.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
______
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .3500
 S.C.S. CURVE NUMBER (AMC II) = 0
 INITIAL SUBAREA FLOW-LENGTH (FEET) = 100.00
 UPSTREAM ELEVATION(FEET) = 526.50
 DOWNSTREAM ELEVATION(FEET) = 523.00
ELEVATION DIFFERENCE(FEET) = 3.50
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 8.892
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.816
 SUBAREA RUNOFF(CFS) = 0.47
```

```
TOTAL AREA(ACRES) = 0.23 TOTAL RUNOFF(CFS) = 0.47
************************
 FLOW PROCESS FROM NODE 204.00 TO NODE 203.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <
______
 ELEVATION DATA: UPSTREAM(FEET) = 523.00 DOWNSTREAM(FEET) = 430.90
 CHANNEL LENGTH THRU SUBAREA (FEET) = 1356.00 CHANNEL SLOPE = 0.0679
 CHANNEL BASE(FEET) = 10.00 "Z" FACTOR = 5.000
 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) =
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.136
 *USER SPECIFIED (SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .3500
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.65
 AVERAGE FLOW DEPTH(FEET) = 0.26 TRAVEL TIME(MIN.) = 6.19
 Tc(MIN.) = 15.08
 SUBAREA AREA(ACRES) = 13.60
                          SUBAREA RUNOFF(CFS) = 19.69
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.350
                            PEAK FLOW RATE(CFS) = 20.02
 TOTAL AREA(ACRES) = 13.8
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.37 FLOW VELOCITY(FEET/SEC.) = 4.55
 LONGEST FLOWPATH FROM NODE 205.00 TO NODE 203.00 = 1456.00 FEET.
******************
 FLOW PROCESS FROM NODE 204.00 TO NODE 203.00 IS CODE =
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 15.08
 RAINFALL INTENSITY (INCH/HR) = 4.14
 TOTAL STREAM AREA(ACRES) = 13.83
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 20.02
******************
                                203.20 IS CODE =
 FLOW PROCESS FROM NODE
                   203.20 TO NODE
______
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<
______
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 18.12 RAIN INTENSITY(INCH/HOUR) = 3.67
 TOTAL AREA(ACRES) = 16.20 TOTAL RUNOFF(CFS) = 24.26
***********************
 FLOW PROCESS FROM NODE 203.10 TO NODE 203.10 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
```

```
______
 ELEVATION DATA: UPSTREAM(FEET) = 455.00 DOWNSTREAM(FEET) = 430.90
 CHANNEL LENGTH THRU SUBAREA (FEET) = 98.00 CHANNEL SLOPE = 0.2459
 CHANNEL BASE(FEET) = 10.00 "Z" FACTOR = 5.000
 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 5.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.646
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .3500
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 25.29
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 7.48
 AVERAGE FLOW DEPTH(FEET) = 0.29 TRAVEL TIME(MIN.) = 0.22
 Tc(MIN.) = 18.34
                                SUBAREA RUNOFF(CFS) = 2.07
 SUBAREA AREA(ACRES) = 1.62
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.402
 TOTAL AREA(ACRES) = 17.8 PEAK FLOW RATE(CFS) = 26.14
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.30 FLOW VELOCITY(FEET/SEC.) = 7.57
 LONGEST FLOWPATH FROM NODE 152.00 TO NODE 203.10 = 2745.00 FEET.
*******************
 FLOW PROCESS FROM NODE 203.10 TO NODE 203.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION (MIN.) = 18.34
 RAINFALL INTENSITY(INCH/HR) = 3.65
 TOTAL STREAM AREA(ACRES) = 17.82
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 26.14
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY

NUMBER (CFS) (MIN.) (INCH/HOUR)

1 20.02 15.08 4.136
2 26.14 18.34 3.646
                                         AREA
                                        (ACRE)
                                          13.83
                                          17.82
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC
                           INTENSITY
          (CFS) (MIN.) (INCH/HOUR)
41.52 15.08 4.136
43.79 18.34 3.646
 NUMBER
    1
     2
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE (CFS) = 43.79 Tc (MIN.) = 18.34
 TOTAL AREA(ACRES) = 31.7
 LONGEST FLOWPATH FROM NODE 152.00 TO NODE 203.00 = 2745.00 FEET.
```

```
******************
 FLOW PROCESS FROM NODE 203.00 TO NODE 202.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 430.90 DOWNSTREAM(FEET) = 419.00
 CHANNEL LENGTH THRU SUBAREA (FEET) = 395.00 CHANNEL SLOPE = 0.0301
 CHANNEL BASE (FEET) = 10.00 "Z" FACTOR = 5.000
 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 5.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.469
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .3500
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 45.14
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 4.47
 AVERAGE FLOW DEPTH(FEET) = 0.74 TRAVEL TIME(MIN.) = 1.47
 Tc(MIN.) = 19.81
 SUBAREA AREA(ACRES) = 2.23 SUBAREA RUNOFF(CFS) = 2.71
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.378
 TOTAL AREA(ACRES) = 33.9
                        PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.73 FLOW VELOCITY(FEET/SEC.) = 4.46
 LONGEST FLOWPATH FROM NODE 152.00 TO NODE 202.00 = 3140.00 FEET.
*******************
 FLOW PROCESS FROM NODE 203.00 TO NODE 202.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 19.81
 RAINFALL INTENSITY(INCH/HR) = 3.47
 TOTAL STREAM AREA(ACRES) = 33.88
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
*******************
 FLOW PROCESS FROM NODE 202.10 TO NODE 202.10 IS CODE = 7
______
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE << < <
______
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 19.49 RAIN INTENSITY(INCH/HOUR) = 3.51
 TOTAL AREA(ACRES) = 2.40 TOTAL RUNOFF(CFS) = 4.03
******************
 FLOW PROCESS FROM NODE 202.10 TO NODE
                              202.00 \text{ IS CODE} = 51
_____
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 445.00 DOWNSTREAM(FEET) = 419.00
```

```
CHANNEL LENGTH THRU SUBAREA(FEET) = 98.00 CHANNEL SLOPE = 0.2653
 CHANNEL BASE (FEET) = 0.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.494
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .3500
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.54
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 15.83
 AVERAGE FLOW DEPTH(FEET) = 0.38 TRAVEL TIME(MIN.) = 0.10
 Tc(MIN.) = 19.59
 SUBAREA AREA(ACRES) = 0.83 SUBAREA RUNOFF(CFS) = 1.01
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.446
 TOTAL AREA(ACRES) = 3.2
                                   PEAK FLOW RATE (CFS) = 5.03
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.39 FLOW VELOCITY(FEET/SEC.) = 16.22
 LONGEST FLOWPATH FROM NODE 152.00 TO NODE 202.00 = 2843.00 FEET.
*******************
 FLOW PROCESS FROM NODE 202.10 TO NODE 202.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION (MIN.) = 19.59
 RAINFALL INTENSITY(INCH/HR) = 3.49
 TOTAL STREAM AREA(ACRES) = 3.23
 PEAK FLOW RATE (CFS) AT CONFLUENCE = 5.03
 ** CONFLUENCE DATA **
 STREAM RUNOFF TC INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
                                          AREA
                                          (ACRE)
           44.3719.813.4695.0319.593.494
    1
                                           33.88
     2
                                             3.23
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC INTENSITY
                   (MIN.) (INCH/HOUR)
 NUMBER
           (CFS)

      49.09
      19.59
      3.494

      49.37
      19.81
      3.469

    1
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 49.37 Tc(MIN.) = 19.81
TOTAL AREA(ACRES) = 37.1
 LONGEST FLOWPATH FROM NODE 152.00 TO NODE 202.00 = 3140.00 FEET.
*************************
 FLOW PROCESS FROM NODE 202.00 TO NODE 201.00 IS CODE = 51
```

```
>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <><<
______
 ELEVATION DATA: UPSTREAM(FEET) = 419.00 DOWNSTREAM(FEET) =
 CHANNEL LENGTH THRU SUBAREA (FEET) = 458.00 CHANNEL SLOPE = 0.0175
 CHANNEL BASE (FEET) = 40.00 "Z" FACTOR = 5.000
 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 5.00
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.189
 *USER SPECIFIED (SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .3500
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 2.76
 AVERAGE FLOW DEPTH(FEET) = 0.45 TRAVEL TIME(MIN.) = 2.76
 Tc(MIN.) = 22.57
 SUBAREA AREA(ACRES) = 4.59
                            SUBAREA RUNOFF (CFS) = 5.12
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.380
 TOTAL AREA(ACRES) = 41.7 PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.44 FLOW VELOCITY(FEET/SEC.) = 2.73
 LONGEST FLOWPATH FROM NODE 152.00 TO NODE 201.00 = 3598.00 FEET.
******************
                     202.00 TO NODE
 FLOW PROCESS FROM NODE
                                   201.00 IS CODE =
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 22.57
 RAINFALL INTENSITY(INCH/HR) = 3.19
 TOTAL STREAM AREA(ACRES) = 41.70
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
************************
 FLOW PROCESS FROM NODE 258.00 TO NODE 257.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS
______
 *USER SPECIFIED (SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .3500
 S.C.S. CURVE NUMBER (AMC II) = 0
 INITIAL SUBAREA FLOW-LENGTH (FEET) =
 UPSTREAM ELEVATION(FEET) = 491.00
 DOWNSTREAM ELEVATION (FEET) = 490.70
 ELEVATION DIFFERENCE(FEET) = 0.30
 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 11.318
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.978
 SUBAREA RUNOFF(CFS) = 0.05
 TOTAL AREA(ACRES) =
                   0.03 TOTAL RUNOFF(CFS) =
********************
```

```
FLOW PROCESS FROM NODE 258.00 TO NODE 257.00 IS CODE = 7
______
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE <<<<
______
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 11.32 RAIN INTENSITY(INCH/HOUR) = 4.98
 TOTAL AREA(ACRES) = 0.03 TOTAL RUNOFF(CFS) = 0.10
************************
                    257.00 TO NODE
                                  256.00 \text{ IS CODE} = 51
 FLOW PROCESS FROM NODE
.....
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 490.70 DOWNSTREAM(FEET) = 482.00
 CHANNEL LENGTH THRU SUBAREA (FEET) = 565.00 CHANNEL SLOPE = 0.0154
 CHANNEL BASE (FEET) = 32.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 1.00
 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.866
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .4300
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.85
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 0.61
 AVERAGE FLOW DEPTH(FEET) = 0.04 TRAVEL TIME(MIN.) = 15.32
 Tc(MIN.) = 26.63
 SUBAREA AREA(ACRES) = 1.10 SUBAREA RUNOFF(CFS) = 1.36
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.437
 TOTAL AREA(ACRES) = 1.1
                              PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.06 FLOW VELOCITY(FEET/SEC.) = 0.69
 LONGEST FLOWPATH FROM NODE 258.00 TO NODE 256.00 = 615.00 FEET.
*****************
 FLOW PROCESS FROM NODE 256.00 TO NODE 255.00 IS CODE = 61
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>> (STANDARD CURB SECTION USED) <<<<
______
 UPSTREAM ELEVATION(FEET) = 482.00 DOWNSTREAM ELEVATION(FEET) = 464.00
 STREET LENGTH(FEET) = 560.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 16.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL (DECIMAL) = 0.050
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0130
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.78
```

```
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.30
   HALFSTREET FLOOD WIDTH(FEET) = 8.70
   AVERAGE FLOW VELOCITY (FEET/SEC.) = 4.32
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.30
 STREET FLOW TRAVEL TIME (MIN.) = 2.16 Tc (MIN.) = 28.79
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.726
 *USER SPECIFIED (SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .5000
 S.C.S. CURVE NUMBER (AMC II) = 0
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.485
 SUBAREA AREA(ACRES) = 3.47 SUBAREA RUNOFF(CFS) = 4.73
TOTAL AREA(ACRES) = 4.6 PEAK FLOW RATE(CFS) =
                            PEAK FLOW RATE(CFS) = 6.07
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.34 HALFSTREET FLOOD WIDTH(FEET) = 10.73
 FLOW VELOCITY (FEET/SEC.) = 4.79 DEPTH*VELOCITY (FT*FT/SEC.) = 1.63
 LONGEST FLOWPATH FROM NODE 258.00 TO NODE 255.00 = 1175.00 FEET.
******************
 FLOW PROCESS FROM NODE 255.00 TO NODE 254.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 461.00 DOWNSTREAM(FEET) = 456.00
 FLOW LENGTH (FEET) = 260.00 MANNING'S N = 0.011
 DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.3 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 8.75
 ESTIMATED PIPE DIAMETER (INCH) = 15.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 6.07
 PIPE TRAVEL TIME (MIN.) = 0.50 Tc (MIN.) = 29.29
 LONGEST FLOWPATH FROM NODE 258.00 TO NODE 254.00 = 1435.00 FEET.
*****************
 FLOW PROCESS FROM NODE 254.00 TO NODE 253.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 456.00 DOWNSTREAM(FEET) = 434.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 142.00 CHANNEL SLOPE = 0.1549
 CHANNEL BASE (FEET) = 0.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 6.07
 FLOW VELOCITY (FEET/SEC.) = 13.74 FLOW DEPTH (FEET) = 0.47
 TRAVEL TIME (MIN.) = 0.17 Tc (MIN.) = 29.46
 LONGEST FLOWPATH FROM NODE 258.00 TO NODE 253.00 = 1577.00 FEET.
*******************
 FLOW PROCESS FROM NODE 253.00 TO NODE 252.10 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
```

```
ELEVATION DATA: UPSTREAM(FEET) = 530.60 DOWNSTREAM(FEET) = 515.76
 FLOW LENGTH (FEET) = 14.30 MANNING'S N = 0.011
 DEPTH OF FLOW IN 6.0 INCH PIPE IS 4.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 38.06
 ESTIMATED PIPE DIAMETER (INCH) = 6.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 6.07
 PIPE TRAVEL TIME (MIN.) = 0.01 Tc (MIN.) = 29.47
 LONGEST FLOWPATH FROM NODE 258.00 TO NODE 252.10 = 1591.30 FEET.
*******************
 FLOW PROCESS FROM NODE 252.10 TO NODE 252.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 515.76 DOWNSTREAM(FEET) = 515.60
 FLOW LENGTH (FEET) = 13.00 MANNING'S N = 0.011
 DEPTH OF FLOW IN 15.0 INCH PIPE IS 9.6 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 7.35
 ESTIMATED PIPE DIAMETER (INCH) = 15.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 6.07
 PIPE TRAVEL TIME (MIN.) = 0.03 Tc (MIN.) = 29.50
 LONGEST FLOWPATH FROM NODE 258.00 TO NODE 252.00 = 1604.30 FEET.
*******************
 FLOW PROCESS FROM NODE 252.00 TO NODE 251.00 IS CODE = 51
._____
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <
______
 ELEVATION DATA: UPSTREAM(FEET) = 415.60 DOWNSTREAM(FEET) = 415.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 40.00 CHANNEL SLOPE = 0.0150
 CHANNEL BASE(FEET) = 27.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 1.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.655
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .3500
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 6.19
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET/SEC.) = 1.37
 AVERAGE FLOW DEPTH(FEET) = 0.16 TRAVEL TIME(MIN.) = 0.49
 Tc(MIN.) = 29.98
 SUBAREA AREA(ACRES) = 0.25 SUBAREA RUNOFF(CFS) = 0.23
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.478
 TOTAL AREA(ACRES) = 4.8 PEAK FLOW RATE(CFS) = 6.15
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.16 FLOW VELOCITY(FEET/SEC.) = 1.36
 LONGEST FLOWPATH FROM NODE 258.00 TO NODE 251.00 = 1644.30 FEET.
******************
 FLOW PROCESS FROM NODE 251.00 TO NODE 251.00 IS CODE = 7
```

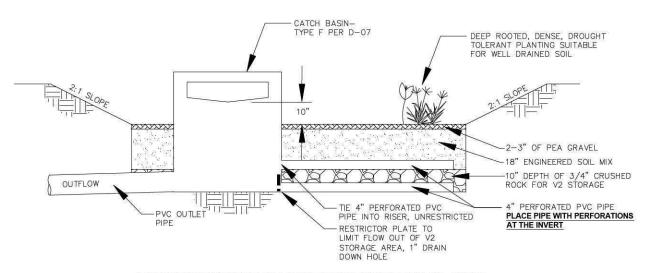
```
>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE <<<<
______
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN) = 29.98 RAIN INTENSITY(INCH/HOUR) = 2.66
 TOTAL AREA(ACRES) =
                     4.80 TOTAL RUNOFF(CFS) =
*****************
 FLOW PROCESS FROM NODE 251.00 TO NODE 250.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 411.50 DOWNSTREAM(FEET) = 411.00
 FLOW LENGTH (FEET) = 21.00 MANNING'S N = 0.011
 DEPTH OF FLOW IN 9.0 INCH PIPE IS 6.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.57
 ESTIMATED PIPE DIAMETER (INCH) = 9.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 2.72
 PIPE TRAVEL TIME (MIN.) = 0.05 Tc (MIN.) = 30.03
 LONGEST FLOWPATH FROM NODE 258.00 TO NODE
                                         250.00 =
                                                   1665.30 FEET.
*****
 FLOW PROCESS FROM NODE 250.00 TO NODE 201.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 30.03
 RAINFALL INTENSITY(INCH/HR) = 2.65
 TOTAL STREAM AREA(ACRES) = 4.80
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.72
 ** CONFLUENCE DATA **

        STREAM
        RUNOFF
        Tc
        INTENSITY

        NUMBER
        (CFS)
        (MIN.)
        (INCH/HOUR)

        1
        50.50
        22.57
        3.189

        2
        2.72
        30.03
        2.653


                                        AREA
                                        (ACRE)
                                         41.70
                                          4.80
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF To
                           INTENSITY
          (CFS) (MIN.) (INCH/HOUR)
52.55 22.57 3.189
 NUMBER
          44.73 30.03 2.653
     2
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 52.55 Tc(MIN.) = 22.57
 TOTAL AREA(ACRES) = 46.5
 LONGEST FLOWPATH FROM NODE 152.00 TO NODE 201.00 = 3598.00 FEET.
```

```
******************
 FLOW PROCESS FROM NODE 201.00 TO NODE 201.10 IS CODE = 41
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 411.00 DOWNSTREAM(FEET) = 410.40
 FLOW LENGTH (FEET) = 30.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 27.0 INCH PIPE IS 15.3 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 11.29
 GIVEN PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 2
 PIPE-FLOW(CFS) = 52.55
 PIPE TRAVEL TIME (MIN.) = 0.04 Tc (MIN.) = 22.62
 LONGEST FLOWPATH FROM NODE 152.00 TO NODE
                                  201.10 =
******************
 FLOW PROCESS FROM NODE 201.10 TO NODE 200.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 410.40 DOWNSTREAM(FEET) = 404.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 320.00 CHANNEL SLOPE = 0.0200
 CHANNEL BASE (FEET) = 30.00 "Z" FACTOR = 3.000
 MANNING'S FACTOR = 0.040 MAXIMUM DEPTH(FEET) = 5.00
  100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.047
 *USER SPECIFIED(SUBAREA):
 USER-SPECIFIED RUNOFF COEFFICIENT = .3500
 S.C.S. CURVE NUMBER (AMC II) = 0
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 55.36
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.31
 AVERAGE FLOW DEPTH(FEET) = 0.53 TRAVEL TIME(MIN.) = 1.61
 Tc(MIN.) = 24.23
 SUBAREA AREA(ACRES) = 5.27
                         SUBAREA RUNOFF(CFS) = 5.62
 AREA-AVERAGE RUNOFF COEFFICIENT = 0.361
 TOTAL AREA(ACRES) = 51.8
                        PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.54 FLOW VELOCITY(FEET/SEC.) = 3.35
 LONGEST FLOWPATH FROM NODE 152.00 TO NODE 200.00 =
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 51.8
PEAK FLOW RATE(CFS) = 56.99
                     51.8 \text{ TC}(MIN.) =
______
______
```

END OF RATIONAL METHOD ANALYSIS

D. DETENTION CALCULATIONS

Basin Outlet Detail

BIORETENTION BASIN OUTLET DETAIL, TYP

NOT TO SCALE

Storage and Capacity Calculations

Table 2.0- Detention Flow Results Summary

Basin	Q_{IN}	Q _{out}	ΔQ	Max Depth (ft)
Α	9.98	1.62	8.36	0.91
В	6.10	2.72	3.38	1.33
Total	16.08	4 34	11.74	

Table 2.1- Catch Basin Type F Inlet Opening Capacity Calculator

Using V-Notch Weir Formula equation (6-9) Q=2.5tan(θ /2)(H^2.5) [San Diego County Drainage Design Manual], where θ =127°.

- 1			
Depth (ft)	H (ft)	Q (cfs)	Q x 2 Inlets
0.9	0.067	0.01	0.01
1	0.167	0.06	0.11
1.1	0.267	0.18	0.37
1.2	0.367	0.41	0.81
1.3	0.467	0.74	1.48
1.4	0.567	1.21	2.41
1.5	0.667	1.81	3.62

Table 2.2- Flow Through Engineered Soil Layer, Q=KIA

 $A_{BASIN A}$ (sf) = 8662 K (in/hr) = 5

 $A_{BASIN B} (sf) = 4286$

Depth (ft)	I, Hydraulic Gradient	Q _{BASIN A} (cfs)	Q _{BASIN B} (cfs)
0.0	1.000	1.003	0.496
0.1	1.060	1.063	0.526
0.2	1.120	1.123	0.556
0.3	1.180	1.183	0.585
0.4	1.240	1.243	0.615
0.5	1.300	1.303	0.645
0.6	1.360	1.363	0.675
0.7	1.420	1.424	0.704
0.8	1.480	1.484	0.734
0.9	1.540	1.544	0.764
1.0	1.600	1.604	0.794

1.1	1.660	1.664	0.823
1.2	1.720	1.724	0.853
1.3	1.780	1.785	0.883
1.4	1.840	1.845	0.913
1.5	1.900	1.905	0.943

Table 2.3- Flow of 1"-dia Drain Down Orifice at Base of V2 Storage Layer (TYP of 2)

	OF HARDY BROWNING THE			and the same	
Basin	Orifice Area	Head (ft) Coefficient	Coefficient	Q discharge	
Depth	(sf)	rieda (it)	Coefficient	(cfs)	
0.1	0.00545	2.6	0.603	0.043	
0.2	0.00545	2.7	0.603	0.043	
0.3	0.00545	2.8	0.603	0.044	
0.4	0.00545	2.9	0.603	0.045	
0.5	0.00545	3	0.603	0.046	
0.6	0.00545	3.1	0.603	0.046	
0.7	0.00545	3.2	0.603	0.047	
0.8	0.00545	3.3	0.603	0.048	
0.9	0.00545	3.4	0.603	0.049	
1	0.00545	3.5	0.603	0.049	
1.1	0.00545	3.6	0.603	0.050	
1.2	0.00545	3.7	0.603	0.051	
1.3	0.00545	3.8	0.603	0.051	
1.4	0.00545	3.9	0.603	0.052	
1.5	0.00545	4	0.603	0.053	

Table 2.4- Basin Outflow and Storage Capacity Calculations

Basin A- Bottom Basin Area (sf) = 8662

Elev	Depth	Vlume acre-ft	Outflow	Volume CF
374	0	0.124	0	5412.88
374.1	0.1	0.144	1.11	6275.20
374.2	0.2	0.164	1.17	7129.76
374.3	0.3	0.183	1.23	7976.56
374.4	0.4	0.202	1.29	8815.60
374.5	0.5	0.221	1.35	9646.88
374.6	0.6	0.240	1.41	10470.40
374.7	0.7	0.259	1.47	11286.16
374.8	0.8	0.278	1.53	12094.16
374.9	0.9	0.296	1.60	12894.40
375	1	0.314	1.77	13686.88

375.1	1.1	0.332	2.08	14471.60
375.2	1.2	0.350	2.59	15248.56
375.3	1.3	0.368	3.32	16017.76
375.4	1.4	0.385	4.31	16779.20
375.5	1.5	0.402	5.58	17532.88

Basin B- Bottom Basin Area (sf) = 4286

Elev	Depth	Vlume acre-ft	Outflow	Volume CF
416	0	0.061	0	2678.32
416.1	0.1	0.071	0.57	3103.38
416.2	0.2	0.081	0.60	3521.36
416.3	0.3	0.090	0.63	3932.26
416.4	0.4	0.100	0.66	4336.08
416.5	0.5	0.109	0.69	4732.82
416.6	0.6	0.118	0.72	5122.48
416.7	0.7	0.126	0.75	5505.06
416.8	0.8	0.135	0.78	5880.56
416.9	0.9	0.143	0.82	6248.98
417	1	0.152	0.96	6610.32
417.1	1.1	0.160	1.24	6964.58
417.2	1.2	0.168	1.72	7311.76
417.3	1.3	0.176	2.42	7651.86
417.4	1.4	0.183	3.38	7984.88
417.5	1.5	0.191	4.62	8310.82

Table 2.5- Drawdown Calculations

Using Darcy's Law to calculate time required to drain 10" of pond depth in largest basin:

1	0660	
	8662	Basin Bottom Area (sf):
	12894	Basin Volume @ 10" Depth (cf):
	1.66	Depth of Engineered Soil above Outlet Point (ft):
ĺ	5	Assumed Soil Hydraulic Conductivity in Engineered Soil (in/hr):

Q= KIA; where I= Hydraulic Gradient above outlet point

1.51	Q at outlet point (cfs)	
2.38	Drawdown Time (hrs) < 72	
2.30	hrs	~

Storage Basin Hydrograph Routing Models

*****	L+++++++++++		+++++++++++		++++++++++
					^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
	HIDRAULICS .	ELEMENTS - II	PROGRAM PACK	AGE	
			DOLUMENC MODE	ı T	
*****		SIN HYDROGRAPH			
-		2012 Advanced B	_		
Vei	r. 19.0 Rele	ase Date: 06/01	1/2012 Liden	ise ID 14:	59
	_				
	A	nalysis prepare	ed by:		
	E44E	BHA Inc			
	5115 .	Avenida Encinas	·		
		Carlsbad CA 92	2008		
******			STUDY *****	******	
* Bioretention I		tion Analysis			*
* 100 Year Storm	n Event				*
*					*
*****	*****	*****	* * * * * * * * * * * * *	******	*****
FILE NAME: 1					
TIME/DATE O	F STUDY: 10:2	5 01/22/2013			
==========		=========			========
ENTERED INFO	DRMATION:				
		YDROGRAPH INTER			
CONSTANT HY	DROGRAPH TIME	UNIT (MINUTES)	= 15.000		
CONSTANT HY	DROGRAPH TIME		= 15.000	0.00	
CONSTANT HYI ASSUMED INI	DROGRAPH TIME	UNIT(MINUTES) ET) IN STORAGE	= 15.000 BASIN = 0	0.00	
CONSTANT HYI ASSUMED INIT ENTERED INFI	DROGRAPH TIME FIAL DEPTH(FE 	UNIT (MINUTES) ET) IN STORAGE H ORDINATES (CF)	= 15.000 BASIN = C		
CONSTANT HYI ASSUMED INI: ENTERED INFI *INTERVAL	DROGRAPH TIME FIAL DEPTH(FE	UNIT (MINUTES) ET) IN STORAGE H ORDINATES (CF: ERVAL FLOW	= 15.000 BASIN = C S): *INTERVAL	FLOW	
CONSTANT HYI ASSUMED INIT ENTERED INFI *INTERVAL * NUMBER	DROGRAPH TIME FIAL DEPTH(FE LOW HYDROGRAP: FLOW *INT (CFS) * NU	UNIT (MINUTES) ET) IN STORAGE H ORDINATES (CFS ERVAL FLOW MBER (CFS)	= 15.000 BASIN = C S): *INTERVAL * NUMBER	FLOW (CFS)	*
CONSTANT HYI ASSUMED INIT ENTERED INFI *INTERVAL * NUMBER * 1:	DROGRAPH TIME FIAL DEPTH(FE LOW HYDROGRAP: FLOW *INT (CFS) * NU 0.00*	UNIT (MINUTES) ET) IN STORAGE H ORDINATES (CFS ERVAL FLOW MBER (CFS) 2: 0.8	= 15.000 BASIN = C S): *INTERVAL * NUMBER 80* 3:	FLOW (CFS)	*
CONSTANT HYI ASSUMED INIT ENTERED INFI *INTERVAL * NUMBER * 1: * 4:	DROGRAPH TIME FIAL DEPTH(FE LOW HYDROGRAP FLOW *INT (CFS) * NU 0.00* 1.10*	UNIT (MINUTES) ET) IN STORAGE H ORDINATES (CFS ERVAL FLOW MBER (CFS) 2: 0.8 5: 1.3	= 15.000 BASIN = C **INTERVAL ** NUMBER 30* 3: 30* 6:	FLOW (CFS) 0.90	*)*)*
CONSTANT HYI ASSUMED INIT ENTERED INFI *INTERVAL * NUMBER * 1:	DROGRAPH TIME FIAL DEPTH(FE LOW HYDROGRAP: FLOW *INT (CFS) * NUI 0.00* 1.10* 2.10*	UNIT (MINUTES) ET) IN STORAGE H ORDINATES (CFS ERVAL FLOW MBER (CFS) 2: 0.8 5: 1.3	= 15.000 BASIN = C **INTERVAL ** NUMBER 80* 3: 30* 6: 98* 9:	FLOW (CFS) 0.90	*)*)*
CONSTANT HYI ASSUMED INIT ENTERED INFI *INTERVAL * NUMBER * 1: * 4:	DROGRAPH TIME FIAL DEPTH(FE LOW HYDROGRAP FLOW *INT (CFS) * NU 0.00* 1.10* 2.10*	UNIT (MINUTES) ET) IN STORAGE H ORDINATES (CFS ERVAL FLOW MBER (CFS) 2: 0.8 5: 1.3	= 15.000 BASIN = C **INTERVAL ** NUMBER 30* 3: 30* 6:	FLOW (CFS) 0.90	*)*)*
CONSTANT HYI ASSUMED INIT ENTERED INFI *INTERVAL * NUMBER * 1: * 4: * 7: * 10:	DROGRAPH TIME FIAL DEPTH(FE LOW HYDROGRAP FLOW *INT (CFS) * NUI 0.00* 1.10* 2.10* 1.00*	UNIT (MINUTES) ET) IN STORAGE H ORDINATES (CFS ERVAL FLOW MBER (CFS) 2: 0.8 5: 1.3	= 15.000 BASIN = C S): *INTERVAL * NUMBER 30* 3: 30* 6: 98* 9:	FLOW (CFS) 0.90 1.90	*)*)*
CONSTANT HYI ASSUMED INIT ENTERED INFI *INTERVAL * NUMBER * 1: * 4: * 7: * 10:	DROGRAPH TIME FIAL DEPTH(FE GOW HYDROGRAP FLOW *INT (CFS) * NUI 0.00* 1.10* 2.10* 1.00*	UNIT (MINUTES) ET) IN STORAGE	= 15.000 BASIN = C S): *INTERVAL * NUMBER 30* 3: 30* 6: 98* 9: 00*	FLOW (CFS) 0.90 1.90	*)*)*
CONSTANT HYI ASSUMED INIT ENTERED INFI *INTERVAL * NUMBER * 1: * 4: * 7: * 10:	DROGRAPH TIME FIAL DEPTH(FE GOW HYDROGRAP FLOW *INT (CFS) * NUI 0.00* 1.10* 2.10* 1.00*	UNIT (MINUTES) ET) IN STORAGE	= 15.000 BASIN = C S): *INTERVAL * NUMBER 30* 3: 30* 6: 98* 9: 00*	FLOW (CFS) 0.90 1.90	*)*)*
CONSTANT HYI ASSUMED INIT ENTERED INFI *INTERVAL * NUMBER * 1: * 4: * 7: * 10: DEPTH-VSST	DROGRAPH TIME FIAL DEPTH(FE LOW HYDROGRAPH FLOW *INT (CFS) * NUT 0.00* 1.10* 2.10* 1.00* FLOW 1.00*	UNIT (MINUTES) ET) IN STORAGE	= 15.000 BASIN = 0 BASIN = 0 S): *INTERVAL * NUMBER 30* 3: 30* 6: 98* 9: 00* RGE INFORMATI	FLOW (CFS) 0.90 1.90 1.50	*)*)*
CONSTANT HYI ASSUMED INIT ENTERED INFI *INTERVAL * NUMBER * 1: * 4: * 7: * 10: DEPTH-VSST	DROGRAPH TIME FIAL DEPTH(FE LOW HYDROGRAPH FLOW *INT (CFS) * NUT 0.00* 1.10* 2.10* 1.00* FLOW 1.00*	UNIT (MINUTES) ET) IN STORAGE	= 15.000 BASIN = 0 BASIN = 0 S): *INTERVAL * NUMBER 30* 3: 30* 6: 98* 9: 00* RGE INFORMATI	FLOW (CFS) 0.90 1.90 1.50	*)*)*
CONSTANT HYNASSUMED INITERINAL ENTERED INFO *INTERVAL * NUMBER * 1: * 4: * 7: * 10: DEPTH-VSST	DROGRAPH TIME FIAL DEPTH(FE LOW HYDROGRAP FLOW *INT (CFS) * NUI 0.00* 1.10* 2.10* 1.00* FORAGE AND DE	UNIT (MINUTES) ET) IN STORAGE	= 15.000 BASIN = C *INTERVAL * NUMBER 80* 3: 30* 6: 98* 9: 00* RGE INFORMATI	FLOW (CFS) 0.90 1.90 1.50	*)*)* ===============================
CONSTANT HYNASSUMED INITER ASSUMED INITER ASSUMED INITER ASSUMED INFORMATION ASSUMED IN THE ASSUMENT A	DROGRAPH TIME FIAL DEPTH(FE LOW HYDROGRAP FLOW *INT (CFS) * NUI 0.00* 1.10* 2.10* 1.00* FORAGE AND DE R OF BASIN DE	UNIT (MINUTES) ET) IN STORAGE H ORDINATES (CFS) ERVAL FLOW MBER (CFS) 2: 0.8 5: 1.3 8: 9.9 11: 0.0 ===================================	= 15.000 BASIN = C BASIN = C S): *INTERVAL * NUMBER B0* 3: 30* 6: 98* 9: 00* EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	FLOW (CFS) 0.90 1.90 1.50 	*)*)*)* ============================
CONSTANT HYNASSUMED INITER ASSUMED INITER ASSUMED INITER ASSUMED INFORMATION ASSUMED IN THE ASSUMENT A	DROGRAPH TIME FIAL DEPTH(FE LOW HYDROGRAPH FLOW *INT (CFS) * NUT 0.00* 1.10* 2.10* 1.00* FORAGE AND DE R OF BASIN DE H STORAGE (ACRE-FEET)	UNIT (MINUTES) ET) IN STORAGE H ORDINATES (CFS) ERVAL FLOW MBER (CFS) 2: 0.8 5: 1.3 8: 9.9 11: 0.0 ===================================	= 15.000 BASIN = C *INTERVAL * NUMBER 80* 3: 30* 6: 98* 9: 00* RGE INFORMATI	FLOW (CFS) 0.90 1.90 1.50 	*)*)*)* OUTFLOW * (CFS) *
CONSTANT HYI ASSUMED INIT ENTERED INFI *INTERVAL * NUMBER * 1: * 4: * 7: * 10: DEPTH-VSST TOTAL NUMBER *BASIN-DEPTH * (FEET)	DROGRAPH TIME FIAL DEPTH(FE LOW HYDROGRAPH FLOW *INT (CFS) * NUT 0.00* 1.10* 2.10* 1.00* FORAGE AND DE R OF BASIN DE H STORAGE (ACRE-FEET) 0.000	UNIT (MINUTES) ET) IN STORAGE H ORDINATES (CFS) ERVAL FLOW MBER (CFS) 2: 0.8 5: 1.3 8: 9.9 11: 0.0 ===================================	= 15.000 BASIN = C S): *INTERVAL * NUMBER 30* 3: 30* 6: 98* 9: 00* ERGE INFORMATI N ENTRIES = SIN-DEPTH ST (FEET) (ACF	FLOW (CFS) 0.90 1.50 1.50	*)*)*)* OUTFLOW * (CFS) * 1.110*
CONSTANT HYI ASSUMED INIT ENTERED INFI *INTERVAL * NUMBER * 1: * 4: * 7: * 10: ===================================	DROGRAPH TIME FIAL DEPTH(FE LOW HYDROGRAP FLOW *INT (CFS) * NU 0.00* 1.10* 2.10* 1.00* ECRAGE AND DE R OF BASIN DE H STORAGE (ACRE-FEET) 0.000 0.164	UNIT (MINUTES) ET) IN STORAGE	= 15.000 BASIN = C BASIN = C S): *INTERVAL * NUMBER 30* 6: 98* 9: 00* BRGE INFORMATI N ENTRIES = SIN-DEPTH ST (FEET) (ACF 0.100 0.300	FLOW (CFS) 0.90 1.50 1.50 50N: 50N: 50RAGE RE-FEET) 0.144	*)*)*)* OUTFLOW * (CFS) * 1.110* 1.230*
CONSTANT HYNASSUMED INITERVAL * NUMBER * 1: * 4: * 7: * 10: TOTAL NUMBER * BASIN-DEPTH * (FEET) * 0.000 * 0.200 * 0.400	DROGRAPH TIME FIAL DEPTH(FE FLOW HYDROGRAP: FLOW *INT (CFS) * NUI 0.00* 1.10* 2.10* 1.00* FORAGE AND DE CORAGE AND DE (ACRE-FEET) 0.000 0.164 0.202	UNIT (MINUTES) ET) IN STORAGE H ORDINATES (CFS ERVAL FLOW MBER (CFS) 2: 0.8 5: 1.3 8: 9.9 11: 0.0 PTH-VSDISCHAM PTH INFORMATION OUTFLOW **BAS (CFS) ** 0.000** 1.170** 1.290**	= 15.000 BASIN = 0 BASIN = 0 S): *INTERVAL * NUMBER 30* 3: 30* 6: 98* 9: 00* ENTRIES = SIN-DEPTH SI (FEET) (ACF 0.100 0.300 0.500	FLOW (CFS) 0.90 1.50 1.50 CON: CORAGE RE-FEET) 0.144 0.183 0.221	*)*)*)* OUTFLOW * (CFS) * 1.110* 1.230* 1.350*
CONSTANT HYNASSUMED INITERVAL * NUMBER * 1: * 4: * 7: * 10: DEPTH-VSST. TOTAL NUMBER * BASIN-DEPTH * (FEET) * 0.000 * 0.400 * 0.600	DROGRAPH TIME FIAL DEPTH(FE LOW HYDROGRAP FLOW *INT (CFS) * NUI 0.00* 1.10* 2.10* 1.00* FORAGE AND DE CORAGE AND DE H STORAGE (ACRE-FEET) 0.000 0.164 0.202 0.240	UNIT (MINUTES) ET) IN STORAGE H ORDINATES (CFS) ERVAL FLOW MBER (CFS) 2: 0.8 5: 1.3 8: 9.9 11: 0.0 PTH-VSDISCHAM PTH INFORMATION OUTFLOW **BAS (CFS) ** 0.000** 1.170** 1.290** 1.410**	= 15.000 BASIN = C S): *INTERVAL * NUMBER 80* 3: 30* 6: 98* 9: 00* ==================================	FLOW (CFS) 0.90 1.50 1.50 CON: 16 CORAGE RE-FEET) 0.144 0.183 0.221 0.259	*)*)*)* OUTFLOW * (CFS) * 1.110* 1.230* 1.350* 1.470*
CONSTANT HYI ASSUMED INIT ENTERED INFI *INTERVAL * NUMBER * 1: * 4: * 7: * 10: DEPTH-VSS' TOTAL NUMBER * (FEET) * 0.000 * 0.200 * 0.400 * 0.600 * 0.800	DROGRAPH TIME FIAL DEPTH(FE GOW HYDROGRAP FLOW *INT (CFS) * NUI 0.00* 1.10* 2.10* 1.00* FORAGE AND DE R OF BASIN DE (ACRE-FEET) 0.000 0.164 0.202 0.240 0.278	UNIT (MINUTES) ET) IN STORAGE	= 15.000 BASIN = C S): *INTERVAL * NUMBER 80* 3: 30* 6: 98* 9: 00* ==================================	FLOW (CFS) 0.90 1.50 1.50 CON: 16 CORAGE RE-FEET) 0.144 0.183 0.221 0.259 0.296	*)*)*)* OUTFLOW * (CFS) * 1.110* 1.230* 1.350* 1.470* 1.600*
CONSTANT HYNASSUMED INITER ASSUMED INITER ASSUMED INITER ASSUMED INITER ASSUMED IN THE ASSUME ASSUMED IN THE ASSUME ASSUM	DROGRAPH TIME FIAL DEPTH(FE LOW HYDROGRAP FLOW *INT (CFS) * NU 0.00* 1.10* 2.10* 1.00* FORAGE AND DE R OF BASIN DE (ACRE-FEET) 0.000 0.164 0.202 0.240 0.278 0.314	UNIT (MINUTES) ET) IN STORAGE	= 15.000 BASIN = C S): *INTERVAL * NUMBER 80* 3: 30* 6: 98* 9: 00* ==================================	FLOW (CFS) 0.90 1.50 1.50 CON: 16 CORAGE RE-FEET) 0.144 0.183 0.221 0.259 0.296 0.332	*)*)*)* OUTFLOW * (CFS) * 1.110* 1.230* 1.350* 1.470* 1.600* 2.080*
CONSTANT HYNASSUMED INITER ASSUMED INITER ASSUMED INITER ASSUMED INFORMATION ASSUMED INFORMATION ASSUMED INTER ASSUMED INTER ASSUMED A	DROGRAPH TIME FIAL DEPTH(FE GOW HYDROGRAP FLOW *INT (CFS) * NUI 0.00* 1.10* 2.10* 1.00* FORAGE AND DE R OF BASIN DE H STORAGE (ACRE-FEET) 0 0.000 0 0.164 0 0.202 0 0.240 0 0.278 0 0.314 0 0.350	UNIT (MINUTES) ET) IN STORAGE	= 15.000 BASIN = C BASIN = C S): *INTERVAL * NUMBER 30* 3: 30* 6: 98* 9: 00* =================================	FLOW (CFS) 0.90 1.50 1.50 2.00: 2.00: 3.00: 3.00: 4.00: 4.00: 4.00: 5.00: 5.00: 5.00: 6.00: 7.00	*)*)*)* OUTFLOW * (CFS) * 1.110* 1.230* 1.470* 1.600* 2.080* 3.320*
CONSTANT HYNASSUMED INITER ASSUMED INITER ASSUMED INITER ASSUMED INITER ASSUMED IN THE ASSUME ASSUMED IN THE ASSUME ASSUM	DROGRAPH TIME FIAL DEPTH(FE LOW HYDROGRAP FLOW *INT (CFS) * NU 0.00* 1.10* 2.10* 1.00* FORAGE AND DE R OF BASIN DE H STORAGE (ACRE-FEET) 0 0.000 0 0.164 0 0.202 0 0.240 0 0.278 0 0.314 0 0.350	UNIT (MINUTES) ET) IN STORAGE	= 15.000 BASIN = C S): *INTERVAL * NUMBER 80* 3: 30* 6: 98* 9: 00* ==================================	FLOW (CFS) 0.90 1.50 1.50 CON: 16 CORAGE RE-FEET) 0.144 0.183 0.221 0.259 0.296 0.332	*)*)*)* OUTFLOW * (CFS) * 1.110* 1.230* 1.350* 1.470* 1.600* 2.080*

```
************************
  _____
   INITIAL BASIN DEPTH (FEET) = 0.00
   INITIAL BASIN STORAGE (ACRE-FEET) =
                               0.00
   INITIAL BASIN OUTFLOW(CFS) =
   BASIN STORAGE, OUTFLOW AND DEPTH ROUTING VALUES:
           \{S-O*DT/2\} \{S+O*DT/2\}
    INTERVAL
    NUMBER
            (ACRE-FEET) (ACRE-FEET)
        1
            0.00000
                    0.00000
        2
              0.13253
                      0.15547
        3
              0.15191
                       0.17609
              0.17029
                       0.19571
        5
             0.18867
                      0.21533
             0.20705
                      0.23495
        7
                      0.25457
             0.22543
        8
             0.24381
                      0.27419
        9
             0.26219
                      0.29381
       10
             0.27947
                      0.31253
       11
             0.29571
                       0.33229
       12
             0.31051
                       0.35349
       13
             0.32324
                      0.37676
             0.33370
                      0.40230
       15
             0.34048
                       0.42952
             0.34436
                       0.45964
   WHERE S=STORAGE(AF);O=OUTFLOW(AF/MIN.);DT=UNIT(MIN.)
          ______
       *UNIT-HYDROGRAPH STORAGE-BASIN ROUTING*
   NOTE: COMPUTED BASIN DEPTH, OUTFLOW, AND STORAGE QUANTITIES
        OCCUR AT THE GIVEN TIME. BASIN INFLOW VALUES REPRESENT THE
        AVERAGE INFLOW DURING THE RECENT HYDROGRAPH UNIT INTERVAL.
  GRAPH NOTATION: "I"=MEAN UNIT INFLOW; "O"=OUTFLOW AT GIVEN TIME
 ______
    TIME INFLOW OUTFLOW
                         STORAGE
   (HOURS) (CFS) (CFS)
                         (ACRE-FT) 0.
                                       2.
                                              5.
                                                      7.
                                                           10.
     0.25
           0.00 0.00
                           0.000 0
                                        •
       [BASIN DEPTH (FEET) =
                           0.001
             0.80 0.12
                           0.015 O I
       [BASIN DEPTH (FEET) =
                           0.01]
     0.75
             0.90 0.23
                             0.030 O I
       [BASIN DEPTH (FEET) =
                           0.02]
     1.00
             1.10
                 0.36
                             0.047 .O I
       [BASIN DEPTH(FEET) =
                           0.031
     1.25 1.30
                 0.50
                             0.065 .O I .
       [BASIN DEPTH (FEET) =
     1.50 1.90 0.71
                             0.092 . O I .
       [BASIN DEPTH (FEET) =
                           0.06]
     1.75
          2.10
                 0.91
                             0.118 . O I .
      [BASIN DEPTH (FEET) =
     2.00 9.98 1.62
                           0.298 . 0 . . .
      [BASIN DEPTH (FEET) =
                           0.91]
```

0.296 . IO .

2.25

1.50 1.60

[BASIN	DEPTH (FEET) =	0.90]						
2.50	1.00 1	.55	0.284		10	•	•		
[BASIN	DEPTH (FEET) =	0.83]						
2.75	0.00 1	. 45	0.253	I	0	•	•	•	
[BASIN	DEPTH (FEET) =	0.67]						
3.00	0.00 1	.36	0.224	I	0				
[BASIN	DEPTH (FEET) =	0.52]						
3.25	0.00 1	.27	0.197	I	0	•			
[BASIN	DEPTH (FEET) =	0.37]						
3.50	0.00 1	.19	0.171	I	0	•			

HYDRAULICS ELEMENTS - II PROGRAM PACKAGE

STORAGE BASIN HYDROGRAPH ROUTING MODEL

(c) Copyright 1983-2012 Advanced Engineering Software (aes) Ver. 19.0 Release Date: 06/01/2012 License ID 1459

Analysis prepared by:

BHA Inc 5115 Avenida Encinas, Suite L Carlsbad CA 92008

FILE NAME: 1049DTB.DAT TIME/DATE OF STUDY: 13:37 01/22/2013
ENTERED INFORMATION:
TOTAL NUMBER OF INFLOW HYDROGRAPH INTERVALS = 14 CONSTANT HYDROGRAPH TIME UNIT(MINUTES) = 15.000 ASSUMED INITIAL DEPTH(FEET) IN STORAGE BASIN = 0.00
ENTERED INFLOW HYDROGRAPH ORDINATES (CFS): *INTERVAL FLOW *INTERVAL FLOW *INTERVAL FLOW * * NUMBER (CFS) * NUMBER (CFS) * NUMBER (CFS) * * 1:
DEPTH-VSSTORAGE AND DEPTH-VSDISCHARGE INFORMATION: TOTAL NUMBER OF BASIN DEPTH INFORMATION ENTRIES = 16
*BASIN-DEPTH STORAGE OUTFLOW **BASIN-DEPTH STORAGE OUTFLOW * * (FEET) (ACRE-FEET) (CFS) ** (FEET) (ACRE-FEET) (CFS) * * 0.000 0.000 0.000** 0.100 0.071 0.570* * 0.200 0.081 0.600** 0.300 0.090 0.630* * 0.400 0.100 0.660** 0.500 0.109 0.690* * 0.600 0.118 0.720** 0.700 0.126 0.750* * 0.800 0.135 0.780** 0.900 0.143 0.820* * 1.000 0.152 0.960** 1.100 0.160 1.240* * 1.200 0.168 1.720** 1.300 0.176 2.420* * 1.400 0.183 3.380** 1.500 0.191 4.620*

INITIAL BASIN DEPTH(FEET) = 0.00 INITIAL BASIN STORAGE (ACRE-FEET) = 0.00 INITIAL BASIN OUTFLOW(CFS) = BASIN STORAGE, OUTFLOW AND DEPTH ROUTING VALUES: INTERVAL $\{S-0*DT/2\}$ $\{S+0*DT/2\}$ NUMBER (ACRE-FEET) (ACRE-FEET) 0.00000 0.00000 1 2 0.06511 0.07689 3 0.07480 0.08720 0.08349 0.09651 4 0.08349 0.09651 0.09318 0.10682 0.10187 0.11613 0.11056 0.12544 0.11825 0.13375 0.12694 0.14306 0.13453 0.15147 5 6 7 8 9 10 11 0.14208 0.16192 12 13 14 0.14808 0.21792 0.14327 0.23873 16 WHERE S=STORAGE(AF);O=OUTFLOW(AF/MIN.);DT=UNIT(MIN.) *UNIT-HYDROGRAPH STORAGE-BASIN ROUTING* NOTE: COMPUTED BASIN DEPTH, OUTFLOW, AND STORAGE QUANTITIES OCCUR AT THE GIVEN TIME. BASIN INFLOW VALUES REPRESENT THE AVERAGE INFLOW DURING THE RECENT HYDROGRAPH UNIT INTERVAL. GRAPH NOTATION: "I"=MEAN UNIT INFLOW; "O"=OUTFLOW AT GIVEN TIME

TIME INF	LOW OUTFLOW	STORAGE				
(HOURS) (CF:	S) (CFS)	(ACRE-FT) 0.	2.	3.	5.	6.
0.25	0.00 0.00	0.000 0	•			
[BASIN	DEPTH(FEET) =	0.00]				
0.50	0.40 0.06	0.008 O I	•			
[BASIN	DEPTH (FEET) =	0.01]				
0.75	0.50 0.13	0.016 O I	•	•	•	
[BASIN	DEPTH (FEET) =	0.02]				
1.00	0.50 0.19	0.023 O I	•			
[BASIN	DEPTH (FEET) =	0.03]				
1.25	0.60 0.25	0.031 .O I		•	•	
[BASIN	DEPTH (FEET) =	0.04]				
1.50	0.70 0.32	0.040 .O I	•	•	•	
[BASIN	DEPTH (FEET) =	0.06]				
1.75	0.80 0.39	0.049 . O I	•	•	•	
[BASIN	DEPTH (FEET) =	0.07]				
2.00	1.20 0.52	0.064 . 0	I.			
[BASIN	DEPTH (FEET) =	0.09]				
2.25	1.60 0.62	0.086 . 0	I	•	•	•

[BASIN	DEPTH (FEET) =	0.25]							
2.50	6.15 2.72	0.17	8				0.	*	I
[BASIN	DEPTH (FEET) =	1.33]							
2.75	1.00 1.19	0.15	8	•	IO	•			
[BASIN	DEPTH (FEET) =	1.08]							
3.00	0.60 0.92	0.14	9		IO				•
[BASIN	DEPTH (FEET) =	0.97]							
3.25	0.50 0.81	0.14	2		I O	500		S(- S)	
[BASIN	DEPTH (FEET) =	0.88]							
3.50	0.00 0.75	0.12	5 :	Ι	0	•	•	•	
[BASIN	DEPTH (FEET) =	0.69]							
3.75	0.00 0.70	0.11	1 :	Ι	0	٠			
[BASIN	DEPTH (FEET) =	0.52]							

E. HYDRAULIC ELEMENTS CALCULATIONS

************************ HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982-2012 Advanced Engineering Software (aes) Ver. 19.0 Release Date: 06/01/2012 License ID 1459 Analysis prepared by: BHA Inc 5115 Avenida Encinas, Suite L Carlsbad CA 92008 TIME/DATE OF STUDY: 11:08 01/22/2013 ______ NODE 105: Problem Descriptions: Node 105- Type B Curb Inlet Capacity ******************** >>>>STREETFLOW MODEL INPUT INFORMATION< ______ CONSTANT STREET GRADE (FEET/FEET) = 0.060200 CONSTANT STREET FLOW(CFS) = 5.16AVERAGE STREETFLOW FRICTION FACTOR (MANNING) = 0.013000 CONSTANT SYMMETRICAL STREET HALF-WIDTH(FEET) = 16.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL (DECIMAL) = 0.020000 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020000 CONSTANT SYMMETRICAL CURB HEIGHT (FEET) = 0.50 CONSTANT SYMMETRICAL GUTTER-WIDTH (FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER-LIP (FEET) = 0.03125 CONSTANT SYMMETRICAL GUTTER-HIKE (FEET) = 0.12500 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS _____ STREET FLOW MODEL RESULTS: STREET FLOW DEPTH(FEET) = 0.29HALFSTREET FLOOD WIDTH (FEET) = 8.30 AVERAGE FLOW VELOCITY (FEET/SEC.) = 6.40PRODUCT OF DEPTH&VELOCITY = 1.87 ****************** >>>>FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION<> ______ Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 5.16GUTTER FLOWDEPTH (FEET) = 0.29

BASIN LOCAL DEPRESSION (FEET) = 0.33

FLOWBY BASIN ANALYSIS RESULTS:

BASIN WIDTH 1.89 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00	FLOW INTERCEPTION 0.72 0.75 0.94 1.12 1.29 1.47 1.65 1.82 2.00 2.17 2.35 2.50 2.65 2.79 2.93 3.06
4.50	
5.50	
6.00	2.17
6.50	2.35
7.00	2.50
7.50	2.65
8.00	2.79
	2.93
9.00	3.06
9.50	3.20
10.00	3.33
10.50	3.46
11.00	3.60
11.50	3.72
12.00	3.82
12.50	3.93
13.00	4.03
13.50	4.13
14.00	4.23
14.50	4.33
15.00	4.43
15.50	4.53
16.00	4.62
16.50	4.72
17.00	4.81
17.50	4.90
18.00	4.99
18.50	5.08
18.92	5.16
表示: 300 mm (100 mm)	-2 %-T 2)

NODE 120:

```
CONSTANT SYMMETRICAL CURB HEIGHT (FEET) = 0.50
   CONSTANT SYMMETRICAL GUTTER-WIDTH (FEET) = 1.50
   CONSTANT SYMMETRICAL GUTTER-LIP (FEET) = 0.03125
   CONSTANT SYMMETRICAL GUTTER-HIKE (FEET) = 0.12500
   FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS
STREET FLOW MODEL RESULTS:
   STREET FLOW DEPTH (FEET) = 0.27
   HALFSTREET FLOOD WIDTH (FEET) = 7.39
   AVERAGE FLOW VELOCITY (FEET/SEC.) = 5.07
   PRODUCT OF DEPTH&VELOCITY = 1.39
*************************
>>>>SUMP TYPE BASIN INPUT INFORMATION<
   Curb Inlet Capacities are approximated based on the Bureau of
   Public Roads nomograph plots for flowby basins and sump basins.
   BASIN INFLOW(CFS) =
                     3.37
   BASIN OPENING (FEET) = 0.50
   DEPTH OF WATER (FEET) = 0.83
   >>>>CALCULATED ESTIMATED SUMP BASIN WIDTH (FEET) =
_____
NODE 255:
Problem Descriptions:
  Node 255- Type B Curb Inlet Capacity
*************************
>>>STREETFLOW MODEL INPUT INFORMATION<
   CONSTANT STREET GRADE (FEET/FEET) = 0.070000
   CONSTANT STREET FLOW(CFS) =
                          6.07
   AVERAGE STREETFLOW FRICTION FACTOR (MANNING) = 0.013000
   CONSTANT SYMMETRICAL STREET HALF-WIDTH (FEET) = 16.00
   DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 10.00
   INTERIOR STREET CROSSFALL (DECIMAL) = 0.020000
   OUTSIDE STREET CROSSFALL (DECIMAL) = 0.020000
   CONSTANT SYMMETRICAL CURB HEIGHT (FEET) =
   CONSTANT SYMMETRICAL GUTTER-WIDTH (FEET) = 1.50
   CONSTANT SYMMETRICAL GUTTER-LIP (FEET) = 0.03125
   CONSTANT SYMMETRICAL GUTTER-HIKE (FEET) = 0.12500
   FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS
STREET FLOW MODEL RESULTS:
 STREET FLOW DEPTH(FEET) = 0.31
   HALFSTREET FLOOD WIDTH (FEET) = 9.20
   AVERAGE FLOW VELOCITY (FEET/SEC.) = 6.29
   PRODUCT OF DEPTH&VELOCITY = 1.95
*******************
>>>FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION<
```

Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins.

```
STREETFLOW(CFS) = 6.07

GUTTER FLOWDEPTH(FEET) = 0.31

BASIN LOCAL DEPRESSION(FEET) = 0.33
```

FLOWBY BASIN ANALYSIS RESULTS:

BASIN WIDTH	FLOW	INTERCEPTION
2.07		0.85
2.50		1.02
3.00		1.21
3.50		1.40
4.00		1.60
4.50		1.79
5.00		1.98
5.50		2.17
6.00		2.36
6.50		2.55
7.00		2.74
7.50		2.91
8.00		3.06
8.50		3.22
9.00		3.36
9.50		3.51
10.00		3.66
10.50		3.80
11.00		3.95
11.50		4.09
12.00		4.23
12.50		4.37
13.00		4.48
13.50		4.59
14.00		4.70
14.50		4.81
15.00		4.92
15.50		5.02
16.00		5.13
16.50		5.23
17.00		5.33
17.50		5.43
18.00		5.54
18.50		5.63
19.00		5.73
19.50		5.83
20.00		5.93
20.50		6.02
20.74		6.07

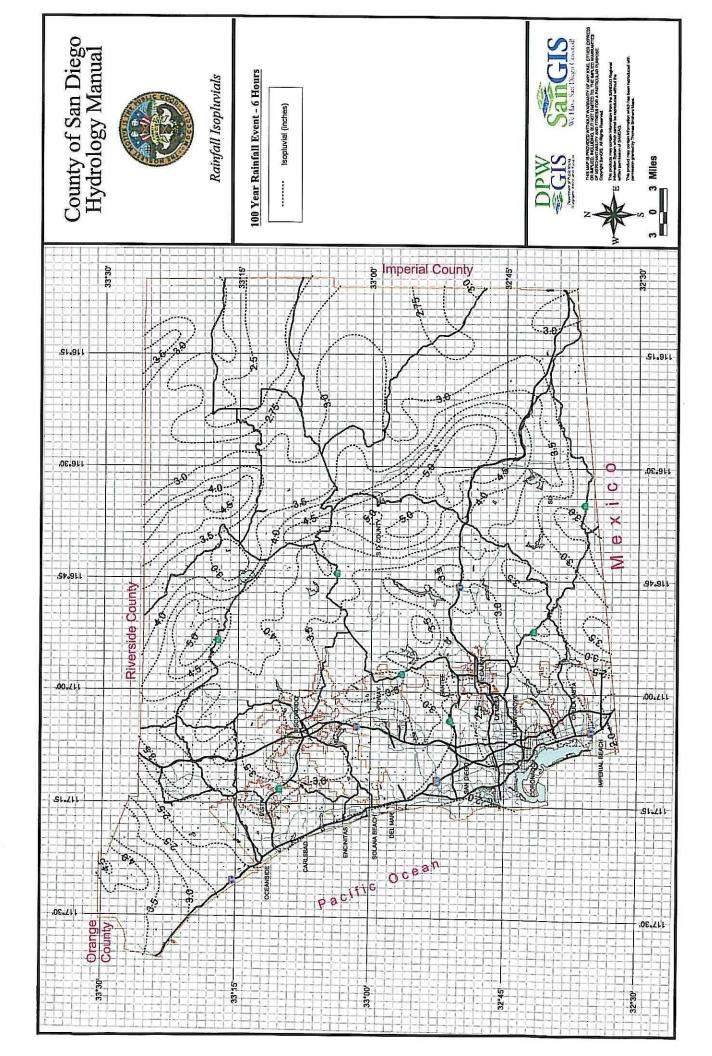
RIP RAP ENERGY DISSIPATOR TABLE (PER D-40):

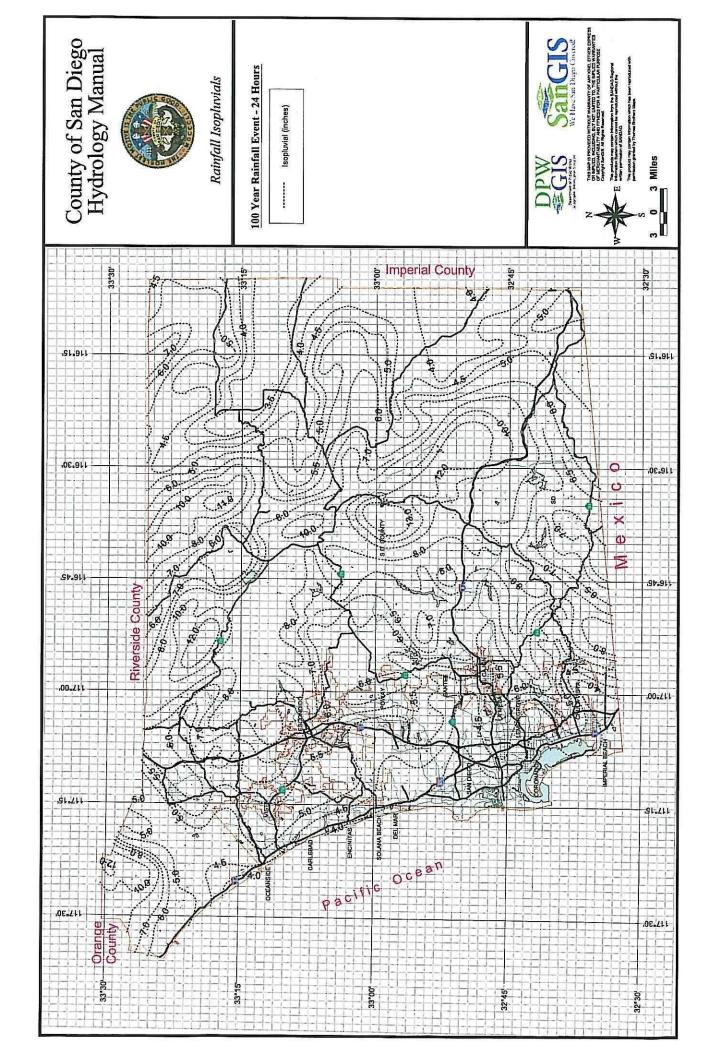
Node	Q100	V100	Rock Classification	T (min)
103	6.33	5.59	No. 2 Backing	1.1 feet
130	3.67	7.84	No. 2 Backing	1.1 feet
250	6.07	9.18	No. 2 Backing	1.1 feet
252	6.07	7.35	No. 2 Backing*	1.1 feet*
254	6.15	8.75	No. 2 Backing	1.1 feet

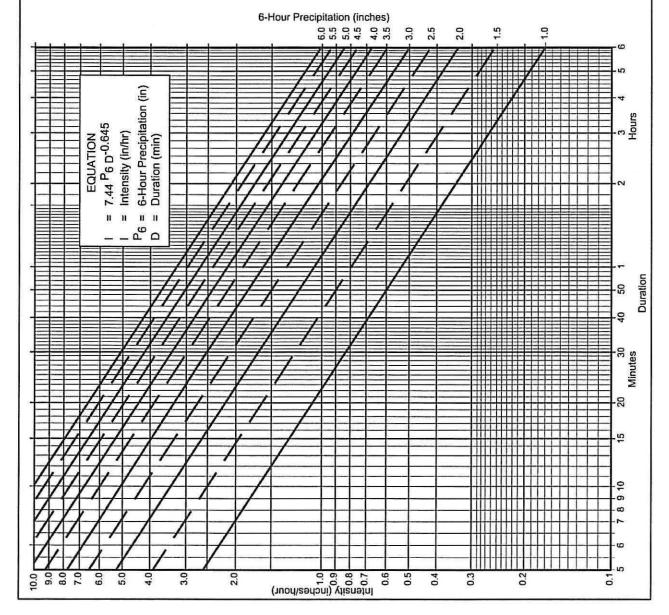
^{*}Grouted

F. GAMBONI RANCH HYDROLOGY REPORT CALCULATION REFERENCES AND MAP

	2	2.89	28.31	2.583	2.20	
	RAINFALL IN			F CONCENTRATI 2 STREAMS.	ON RATIO	
	NUMBER 1	RUNOFF (CFS) 8.66	Tc	INTENSITY (INCH/HOUR) 3.825 2.583		
				ARE AS FOLLO		
			santaminalia e a se		**************************************	*************** = 11
_					AIN-STREAM MEMO	RY<<<<
	** MAIN STE STREAM NUMBER 1 ** MEMORY E STREAM NUMBER 1 ** PEAK FLO STREAM E NUMBER 1	REAM CONFI RUNOFF (CFS) 8.66 BANK # 1 RUNOFF (CFS) 16.38 DW RATE TARUNOFF (CFS) 23.57	TC (MIN.) 15.40 CONFLUENCE TC (MIN.) 17.81 ABLE ** TC (MIN.) 15.40	A ** INTENSITY (INCH/HOUR) 3.825	AREA (ACRE) 5.60	
	COMPUTED CO PEAK FLOW F TOTAL AREA	ONFLUENCE RATE (CFS) (ACRES) =	ESTIMATES = 24.2	ARE AS FOLLO	= 17.81	*****
				00 TO NODE	320.00 IS CODE =	= 12
	>>>>CLEAR			<<<		
					**************************************	· * * * * * * * * * * * * * * * * * * *
		TE PIPEFLO	W TRAVELT	ME THRU SUBA	REA<<<<	
==				IPE IS 16.2		


```
UPSTREAM NODE ELEVATION = 458.37
 DOWNSTREAM NODE ELEVATION = 454.50
 FLOWLENGTH (FEET) = 193.87 MANNING'S N = .013
 GIVEN PIPE DIAMETER (INCH) = 24.00 NUMBER OF PIPES = 1
 PIPEFLOW THRU SUBAREA(CFS) = 24.26
 TRAVEL TIME (MIN.) = .30
                      TC(MIN.) = 18.12
*************
 FLOW PROCESS FROM NODE 320.10 TO NODE 360.00 IS CODE = 51
>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA
UPSTREAM NODE ELEVATION = 454.50
 DOWNSTREAM NODE ELEVATION = 431.00
 CHANNEL LENGTH THRU SUBAREA (FEET) = 420.00
 CHANNEL SLOPE = .0560
 CHANNEL BASE (FEET) = 2.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = .035 MAXIMUM DEPTH(FEET) = 2.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 24.26
 FLOW VELOCITY (FEET/SEC) = 6.95 FLOW DEPTH (FEET) = .91
 TRAVEL TIME (MIN.) = 1.01 TC (MIN.) = 19.12
***************
 FLOW PROCESS FROM NODE 360.00 TO NODE 360.00 IS CODE =
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 19.12
 RAINFALL INTENSITY (INCH/HR) = 3.33
 TOTAL STREAM AREA (ACRES) = 16.20
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
******************
 FLOW PROCESS FROM NODE 330.00 TO NODE 340.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
SOIL CLASSIFICATION IS "C"
 RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4000
 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A)
 WITH 10-MINUTES ADDED = 11.68 (MINUTES)
 INITIAL SUBAREA FLOW-LENGTH = 120.00
 UPSTREAM ELEVATION = 526.50
 DOWNSTREAM ELEVATION = 525.00
 ELEVATION DIFFERENCE =
                    1.50
 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.572
 SUBAREA RUNOFF (CFS) = .37
 TOTAL AREA(ACRES) = .20 TOTAL RUNOFF(CFS) =
                                        .37
```


PIPEFLOW VELOCITY (FEET/SEC.) = 10.7


```
UPSTREAM ELEVATION = 508.00
 DOWNSTREAM ELEVATION = 484.00
 ELEVATION DIFFERENCE = 24.00
 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 18.044
 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH
  DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED.
 *CAUTION: SUBAREA FLOWLENGTH EXCEEDS COUNTY
    NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED.
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.454
 SUBAREA RUNOFF (CFS) = 1.55
 TOTAL AREA(ACRES) =
                      .90 TOTAL RUNOFF(CFS) =
****************
 FLOW PROCESS FROM NODE 380.00 TO NODE 390.00 IS CODE = 6
>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<
______
 UPSTREAM ELEVATION = 508.00 DOWNSTREAM ELEVATION = 469.10
 STREET LENGTH (FEET) = 425.00 CURB HEIGHT (INCHES) = 6.
 STREET HALFWIDTH (FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 18.50
 INTERIOR STREET CROSSFALL(DECIMAL) = .020
 OUTSIDE STREET CROSSFALL (DECIMAL) =
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
       **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 2.46
STREETFLOW MODEL RESULTS:
       STREET FLOWDEPTH (FEET) = .24
       HALFSTREET FLOODWIDTH(FEET) = 5.84
       AVERAGE FLOW VELOCITY (FEET/SEC.) = 5.37
       PRODUCT OF DEPTH&VELOCITY = 1.30
 STREETFLOW TRAVELTIME (MIN) = 1.32 TC (MIN) = 19.36
  100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.301
 SOIL CLASSIFICATION IS "C"
 SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5000
 SUBAREA AREA(ACRES) = 1.10 SUBAREA RUNOFF(CFS) = SUMMED AREA(ACRES) = 2.00 TOTAL RUNOFF(CFS) =
 END OF SUBAREA STREETFLOW HYDRAULICS:
 DEPTH (FEET) = .27 HALFSTREET FLOODWIDTH (FEET) = 6.99
 FLOW VELOCITY (FEET/SEC.) = 5.55 DEPTH*VELOCITY = 1.48
******************
                     390.00 TO NODE
 FLOW PROCESS FROM NODE
                                   400.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA<
_______
 UPSTREAM NODE ELEVATION =
                       469.10
 DOWNSTREAM NODE ELEVATION = 419.00
 CHANNEL LENGTH THRU SUBAREA (FEET) = 104.00
 CHANNEL SLOPE = .4817
 CHANNEL BASE (FEET) = 2.00 "Z" FACTOR = 1.500
```

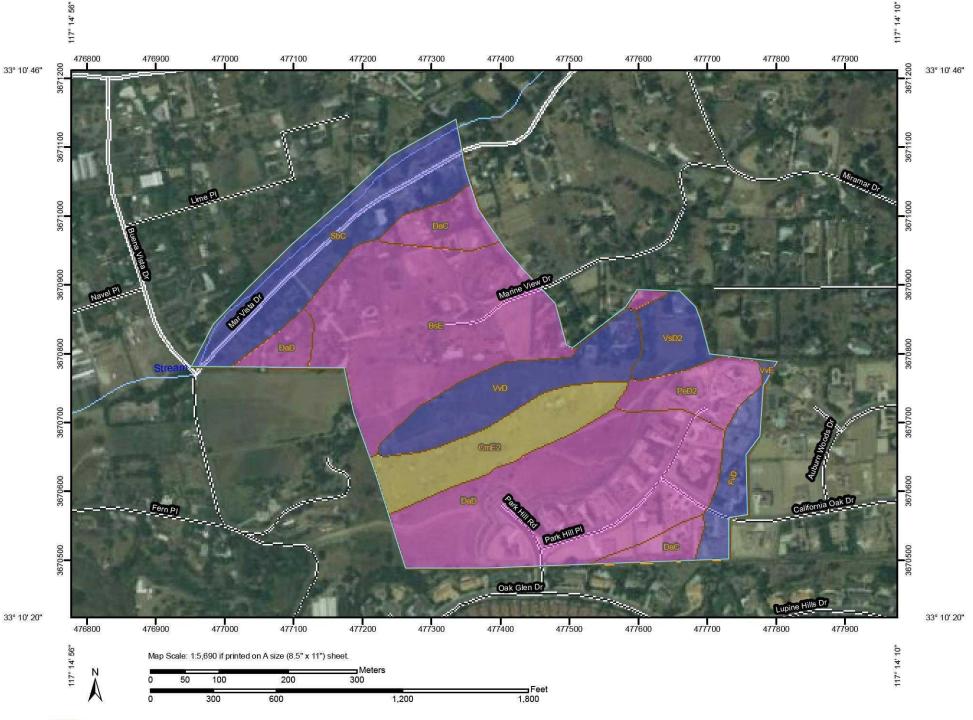
```
MANNING'S FACTOR = .015 MAXIMUM DEPTH(FEET) = 1.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 3.37
 FLOW VELOCITY (FEET/SEC) = 14.20 FLOW DEPTH (FEET) = .11
 TRAVEL TIME (MIN.) = .12 TC (MIN.) = 19.49
*************
 FLOW PROCESS FROM NODE 390.00 TO NODE 400.00 IS CODE = 8
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.287
 SOIL CLASSIFICATION IS "C"
 SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5000
 SUBAREA AREA(ACRES) = .40 SUBAREA RUNOFF(CFS) =
 TOTAL AREA (ACRES) = 2.40 TOTAL RUNOFF (CFS) = 4.03
 TC(MIN) = 19.49
*************
 FLOW PROCESS FROM NODE 400.00 TO NODE 400.00 IS CODE =
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION (MIN.) = 19.49
 RAINFALL INTENSITY (INCH/HR) = 3.29
 TOTAL STREAM AREA (ACRES) = 2.40
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
                  Tc
                        INTENSITY
 STREAM RUNOFF
         (CFS) (MIN.) (INCH/HOUR)
49.24 20.17 3.215
4.03 19.49 3.287
                                   (ACRE)
 NUMBER
   1
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
 STREAM RUNOFF TC INTENSITY
                (MIN.) (INCH/HOUR)
 NUMBER
         (CFS)
          52.18 19.49 3.287
    1
         53.18 20.17
                         3.215
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE (CFS) = 53.18 Tc (MIN.) = 20.17
 TOTAL AREA (ACRES) = 40.70
**********************
 FLOW PROCESS FROM NODE 400.00 TO NODE 420.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
>>>>TRAVELTIME THRU SUBAREA<
```

IV. REFERENCES

Directions for Application:

- (1) From precipitation maps determine 6 hr and 24 hr amounts for the selected frequency. These maps are included in the County Hydrology Manual (10, 50, and 100 yr maps included in the Design and Procedure Manual).
- (2) Adjust 6 hr precipitation (if necessary) so that it is within the range of 45% to 65% of the 24 hr precipitation (not applicable to Desert).
- (3) Plot 6 hr precipitation on the right side of the chart.
- (4) Draw a line through the point parallel to the plotted lines.
- (5) This line is the intensity-duration curve for the location being analyzed.

Application Form:


(a) Selected frequency year

(b)
$$P_6 = \frac{P_6}{10.1} = \frac{P_6}{10$$

(c) Adjusted $P_6^{(2)} = _in$ in.

Note: This chart replaces the Intensity-Duration-Frequency curves used since 1965.

96	•		,	2		3.5		4.6		u	0
0	-	ū	v	6.3	2	0.5	4	4 .0	n	0.0	0
Ouration	_	_	_	-	_	-	_	_	_	-	-
S	2.63	3.95	5.27	6.59	7.90	9.22	10.54	11.86	13.17	14.49	15.81
7	2.12	3.18	4.24	5.30	6.36	7.42	8.48	9.54	10.60	11.66	12.72
10	1.68	2.53	3.37	4.21	5.05	5.90	6.74	7.58	8.42	9.27	10.11
15	1.30	1.95	2.59	3.24	3.89	4.54	5.19	5.84	6.49	7.13	7.78
20	1.08	1.62	2.15	2.69	3.23	3.77	4.31	4.85	5.39	5.93	6.46
25	0.93	1.40	1.87	2.33	2.80	3.27	3.73	4.20	4.67	5.13	5.60
30	0.83	1.24	1.66	2.07	2.49	2.90	3.32	3.73	4.15	4.56	4.98
40	69'0	1.03	1.38	1.72	2.07	2.41	2.76	3.10	3.45	3.79	4.13
20	0.60	0.90	1.19	1,49	1.79	2.09	2.39	2.69	2.98	3.28	3.58
9	0.53	0.80	1.06	1.33	1.59	1.86	2.12	2.39	2.65	2.92	3.18
90	0.41	0.61	0.82	1.02	1.23	1.43	1.63	1.84	2.04	2.25	2.45
120	0.34	0.51	0.68	0.85	1.02	1.19	1.36	1.53	1.70	1.87	2.04
150	0.29	0.44	0.59	0.73	0.88	1.03	1.18	1.32	1.47	1.62	1.76
180	0.26	0.39	0.52	0.65	0.78	0.91	1.04	1.18	1.31	1.44	1.57
240	0.22	0.33	0.43	0.54	0.65	0.76	0.87	0.98	1.08	1.19	1.30
300	0.19	0.28	0.38	0.47	0.56	0.66	0.75	0.85	0.94	1.03	1.13
360	0.17	0.25	0.33	0.42	0.50	0.58	0.67	0.75	0.84	0.92	1.00

MAP LEGEND

Area of Interest (AOI) Area of Interest (AOI) Soils Soil Map Units Soil Ratings A A/D В B/D C C/D Not rated or not available **Political Features** Cities **Water Features** Streams and Canals Transportation +++ Interstate Highways **US Routes** ~ Major Roads Local Roads \sim

MAP INFORMATION

Map Scale: 1:5,690 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: UTM Zone 11N NAD83

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Diego County Area, California Survey Area Data: Version 6, Dec 17, 2007

Date(s) aerial images were photographed: 6/7/2005

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Hydrologic Soil Group

Hydro	logic Soil Group— Summary by Ma	p Unit — San Diego	County Area, California	a (CA638)
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
BsE	Bosanko clay, 15 to 30 percent slopes	D	17.3	24.7%
CmE2	Cieneba rocky coarse sandy loam, 9 to 30 percent slopes , eroded	С	5.9	8.5%
DaC	Diablo clay, 2 to 9 percent slopes	D	3.6	5.1%
DaD	Diablo clay, 9 to 15 percent slopes	D	19.4	27.7%
FvD	Fallbrook-Vista sandy loams, 9 to 15 percent slopes	В	2.7	3.8%
PeD2	Placentia sandy loam, 9 to 15 percent slopes, eroded	D	3.2	4.5%
SbC	Salinas clay loam, 2 to 9 percent slopes	В	8.9	12.7%
VsD2	Vista coarse sandy loam, 9 to 15 percent slopes, eroded	В	2.6	3.7%
VvD	Vista rocky coarse sandy loam, 5 to 15 percent slopes	В	6.4	9.1%
VvE	Vista rocky coarse sandy loam, 15 to 30 percent slopes	В	0.1	0.2%
Totals for Area of Int	erest	1	70.1	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

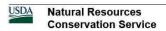
The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.


If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher

RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY

RUN DATE 1/21/2013
HYDROGRAPH FILE NAME Text1
TIME OF CONCENTRATION 41 MIN.
6 HOUR RAINFALL 3.2 INCHES
BASIN AREA 8.54 ACRES
RUNOFF COEFFICIENT 0.511
PEAK DISCHARGE 9.98 CFS

TIME (MIN) = 0
TIME (MIN) = 41
TIME (MIN) = 41
TIME (MIN) = 82
TIME (MIN) = 123
TIME (MIN) = 123
TIME (MIN) = 164
TIME (MIN) = 205
TIME (MIN) = 205
TIME (MIN) = 246
TIME (MIN) = 287
TIME (MIN) = 328
TIME (MIN) = 328
TIME (MIN) = 369
TIME (MIN) = 410
DISCHARGE (CFS) = 1.5
TIME (MIN) = 369
TIME (MIN) = 410
DISCHARGE (CFS) = 0

INFLOW HYDROGRAPH BASIN A STUDY: 1049 DTA

RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY

RUN DATE 1/22/2013 HYDROGRAPH FILE NAME Text1 TIME OF CONCENTRATION 30 MIN. 6 HOUR RAINFALL 3.2 INCHES BASIN AREA 4.8 ACRES RUNOFF COEFFICIENT 0.478 PEAK DISCHARGE 6.15 CFS

TIME (MIN) = 0DISCHARGE (CFS) = 0 DISCHARGE (CFS) = 0.4
DISCHARGE (CFS) = 0.5
DISCHARGE (CFS) = 0.5
DISCHARGE (CFS) = 0.6 TIME (MIN) = 30 TIME (MIN) = 60 TIME (MIN) = 90 TIME (MIN) = 120 TIME (MIN) = 150 TIME (MIN) = 180 TIME (MIN) = 210 DISCHARGE (CFS) = 0.7 DISCHARGE (CFS) = 0.8 DISCHARGE (CFS) = 1.2 DISCHARGE (CFS) = 1.6 DISCHARGE (CFS) = 6.15 TIME (MIN) = 240TIME (MIN) = 270 TIME (MIN) = 300 TIME (MIN) = 330 DISCHARGE (CFS) = 1 DISCHARGE (CFS) = 0.6 TIME (MIN) = 360DISCHARGE (CFS) = 0.5 DISCHARGE (CFS) = 0 TIME (MIN) = 390

INFLOW HYDROGRAPH BASIN B STUDY: 1049 DTB San Diego County Hydrology Manual Date: June 2003

3 6 of 26 Section: Page:

Table 3-1 RUNOFF COEFFICIENTS FOR URBAN AREAS

Lai	Land Use		Ru	Runoff Coefficient "C"	ري.	
				Soil	Soil Type	
NRCS Elements	County Elements	% IMPER.	A	В	ن	D
Undisturbed Natural Terrain (Natural)	Permanent Open Space	* 0	0.20	0.25	0.30	(0.35)
Low Density Residential (LDR)	Residential, 1.0 DU/A or less	10	0.27	0.32	0.36	0.41
Low Density Residential (LDR)	Residential, 2.0 DU/A or less	20	0.34	0.38	0.42	0.46
Low Density Residential (LDR)	Residential, 2.9 DU/A or less	25	0.38	0.41	0.45	0.49
Medium Density Residential (MDR)	Residential, 4.3 DU/A or less	30	0.41	0.45	0.48	0.52
Medium Density Residential (MDR)	Residential, 7.3 DU/A or less	40	0.48	0.51	0.54	0.57
Medium Density Residential (MDR)	Residential, 10.9 DU/A or less	45	0.52	0.54	0.57	09.0
Medium Density Residential (MDR)	Residential, 14.5 DU/A or less	90	0.55	0.58	09.0	0.63
High Density Residential (HDR)	Residential, 24.0 DU/A or less	65	99.0	19.0	69.0	0.71
High Density Residential (HDR.)	Residential, 43.0 DU/A or less	80	92.0	71.0	0.78	0.79
Commercial/Industrial (N. Com)	Neighborhood Commercial	80	92.0	0.77	0.78	0.79
Commercial/Industrial (G. Com)	General Commercial	85	0.80	0.80	0.81	0.82
Commercial/Industrial (O.P. Com)	Office Professional/Commercial	06	0.83	0.84	0.84	0.85
Commercial/Industrial (Limited I.)	Limited Industrial	90	0.83	0.84	0.84	0.85
Commercial/Industrial (General I.)	General Industrial	95	0.87	0.87	0.87	0.87
()		1	1 -1 - 1	1 C 1 5 mily 2 1 3 1	(representing the	Hours att mituarament 2 1 5 mitual at Latter Latter management

*The values associated with 0% impervious may be used for direct calculation of the runoff coefficient as described in Section 3.1.2 (representing the pervious runoff coefficient, Cp, for the soil type), or for areas that will remain undisturbed in perpetuity. Justification must be given that the area will remain natural forever (e.g., the area is located in Cleveland National Forest).

DU/A = dwelling units per acre

NRCS = National Resources Conservation Service

San Diego County Hydrology Manual	Section:	3
Date: June 2003	Page:	12 of 26
	Market Sand	

Note that the Initial Time of Concentration should be reflective of the general land-use at the upstream end of a drainage basin. A single lot with an area of two or less acres does not have a significant effect where the drainage basin area is 20 to 600 acres.

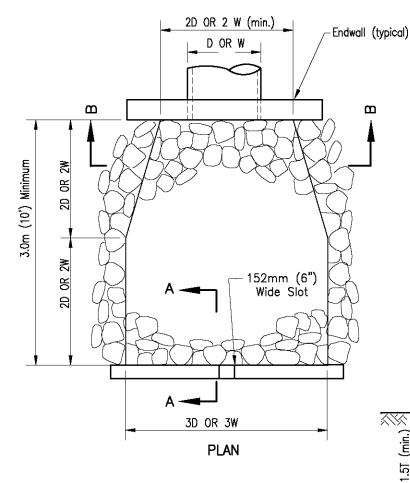

Table 3-2 provides limits of the length (Maximum Length (L_M)) of sheet flow to be used in hydrology studies. Initial T_i values based on average C values for the Land Use Element are also included. These values can be used in planning and design applications as described below. Exceptions may be approved by the "Regulating Agency" when submitted with a detailed study.

Table 3-2

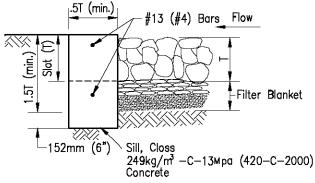
MAXIMUM OVERLAND FLOW LENGTH (L_M)
& INITIAL TIME OF CONCENTRATION (T.)

Element*	DU/	.5%		1%		2%		3%		5%		10%	
	Acre	L _M	T_{i}	L _M	Ti	L_{M}	Ti	L _M	T_{i}	L_{M}	Ti	L _M	T_{i}
Natural		50	13.2	70	12.5	85	10.9	100	10.3	100	8.7	100	6.9
LDR	1	50	12.2	70	11.5	85	10.0	100	9.5	100	8.0	100	6.4
LDR	2	50	11.3	70	10.5	85	9.2	100	8.8	100	7.4	100	5.8
LDR	2.9	50	10.7	70	10.0	85	8.8	95	8.1	100	7.0	100	5.6
MDR	4.3	50	10.2	70	9.6	80	8.1	95	7.8	100	6.7	100	5.3
MDR	7.3	50	9.2	65	8.4	80	7.4	95	7.0	100	6.0	100	4.8
MDR	10.9	50	8.7	65	7.9	80	6.9	90	6.4	100	5.7	100	4.5
MDR	14.5	50	8.2	65	7.4	80	6.5	90	6.0	100	5.4	100	4.3
HDR	24	50	6.7	65	6.1	75	5.1	90	4.9	95	4.3	100	3.5
HDR	43	50	5.3	65	4.7	75	4.0	85	3.8	95	3.4	100	2.7
N. Com		50	5.3	60	4.5	75	4.0	85	3.8	95	3.4	100	2.7
G. Com		50	4.7	60	4.1	75	3.6	85	3.4	90	2.9	100	2.4
O.P./Com		50	4.2	60	3.7	70	3.1	80	2.9	90	2.6	100	2.2
Limited I.		50	4.2	60	3.7	70	3.1	80	2.9	90	2.6	100	2.2
General I.		50	3.7	60	3.2	70	2.7	80	2.6	90	2.3	100	1.9

^{*}See Table 3-1 for more detailed description

Concrete Channel-

D OR W


SECTION B-B

Design Velocity m/sec (ft/sec)*	Rock Classification	T (min)
1.8-3 (6-10)	No. 2 Backing	320mm (1.1ft)
3-3.7 (10-12)	220 kg (1/4 ton)	823mm (2.7ft)
3.7-4.3 (12-14)	450 kg (1/2 ton)	1.1m (3.5ft)
4.3–4.9 (14–16)	900 kg (1 ton)	1.3m (4.4ft)
4.9-5.5 (16-18)	1.8 tonne (2 ton)	1.6m (5.4ft)

*over 5.5 mps (18 fps) requires special design

D = Pipe Diameter

W = Bottom Width of Channel

SECTION A-A

NOTES

D min.

3 (min.)

- Plans shall specify:

 A) Rock Class and thickness (T).
 B) Filter material, number of layers and thickness.
- Rip rap sholl be either quorry stone or broken concrete (if shown on the plans.) Cobbles ore not acceptable.
- Rip rap sholl be placed over filter blanket which may be either granular material or filter fabric (woven filter slit film fabric sholl not be used).
- See Regional Supplement Amendments for selection of filter blanket.
- Rip rap energy dissipotors shall be designated os either Type 1 or Type 2. Type 1 shall be with concrete sill; Type 2 shall be without sill.

Revision	Ву	Approved	Date	SAN DIEGO REGIONAL STANDARD DRAWING		BY THE SAN DIEGO DARDS COMMITTEE
ORIGINAL		Kercheval	12/75	SAN DIEGO REGIONAL STANDARD DRAWING	I do suprime	7
Add Metric		T. Stanton	03/03		Hartant	(m) 04/27/2006
Add Rip Rap Table		S. Brady	04/06	RIP RAP	Chairperson R.C.	
				ENERGY DISSIPATOR	DRAWING	D-4D
				ENERGY BIOON XION	NUMBER	U-4U